Computational Model of the Human Elbow and Forearm: Application to Complex Varus Instability


Computational modeling is an effective way to predict the response of complex systems to perturbations that are difficult or impossible to measure experimentally. A computational model of the human elbow was developed wherein joint function was dictated by three-dimensional osteoarticular interactions, soft tissue constraints, muscle action, and external loading. The model was validated against two cadaveric experiments that examined the significance of coronoid process (CP) fractures, lateral ulnar collateral ligament (LUCL) ruptures, and radial head (RH) resection in varus stability. The model was able to accurately reproduce the trend of decreasing resistance to varus displacement with increased CP resection, with a significant drop in stability observed at >50% resection. In addition, the model showed that isolated repair of either the LUCL or RH conferred significant varus stability to the joint in the presence of a deficient coronoid, with the ligament responsible for the greatest increase in stability. Predicted magnitudes of joint contact force support claims that the ulnohumeral articulation is the most significant osseous stabilizer of the joint in varus, with the radiohumeral articulation having an increased role with increasing coronoid resection at low flexion angles. With confidence in the predictive ability of this computational model, future simulations could further investigate joint function under other loading scenarios and injury states.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    ADAMS/Solver User’s Guide. USA: MSC Software Corp., 2006.

  2. 2.

    Beggs, J. S., In: Kinematics, edited by Anonymous. Washington: Hemisphere Pub. Corp., vol. 223, 1983.

  3. 3.

    Buchanan, T. S., S. L. Delp, and J. A. Solbeck. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng. 120(5):634–639, 1998.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Fern, S. E., J. R. Owen, N. J. Ordyna, J. S. Wayne, and N. D. Boardman. Complex varus elbow instability: a terrible triad model. J. Should. Elb. Surg. 18(2):269–274, 2009.

    Article  Google Scholar 

  5. 5.

    Fisk, J. P., and J. S. Wayne. Development and validation of a computational musculoskeletal model of the elbow joint. In: Biomedical Engineering. Richmond: Virginia Commonwealth University, 2007, p. 144.

  6. 6.

    Fisk, J. P., and J. S. Wayne. Development and validation of a computational musculoskeletal model of the elbow and forearm. Ann. Biomed. Eng. 37(4):803–812, 2009.

    Article  PubMed  Google Scholar 

  7. 7.

    Fornalski, S., R. Gupta, and T. Q. Lee. Anatomy and biomechanics of the elbow joint. Sports Med. Arthrosc. Rev. 11(1):1, 2003.

    Article  Google Scholar 

  8. 8.

    Gabriel, M. T., H. J. Pfaeffle, K. J. Stabile, M. M. Tomaino, and K. J. Fischer. Passive strain distribution in the interosseous ligament of the forearm: implications for injury reconstruction. J. Hand Surg. 29(2):293–298, 2004.

    Article  Google Scholar 

  9. 9.

    Garner, B. A., and M. G. Pandy. A kinematic model of the upper limb based on the visible human project (VHP) image dataset. Comput. Methods Biomech. Biomed. Eng. 2(2):107–124, 1999.

    Article  Google Scholar 

  10. 10.

    Gear, C. W. The automatic integration of ordinary differential equations. Commun. ACM 14:176–179, 1971.

    Article  Google Scholar 

  11. 11.

    Gonzalez, R. V., L. D. Abraham, and R. E. Barr. Muscle activity in rapid multi-degree-of-freedom elbow movements: solutions from a musculoskeletal model. Biol. Cybern. 80(5):357–367, 1999.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Gonzalez, R. V., E. L. Hutchins, and R. E. Barr. Development and evaluation of a musculoskeletal model of the elbow joint complex. J. Biomech. Eng. 118(1):32–40, 1996.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hildebrand, K. A., S. D. Patterson, and G. J. King. Acute elbow dislocations simple and complex. Orthop. Clin. N. Am. 30(1):63–79, 1999.

    CAS  Article  Google Scholar 

  14. 14.

    Hotchkiss, R. N., K. N. An, D. T. Sowa, S. Basta, and A. J. Weiland. An anatomic and mechanical study of the interosseous membrane of the forearm: pathomechanics of proximal migration of the radius. J. Hand Surg. 14(2 Pt 1):256–261, 1989.

    CAS  Google Scholar 

  15. 15.

    Hull, J. R., J. R. Owen, S. E. Fern, J. S. Wayne, and N. D. Boardman. Role of the coronoid process in varus osteoarticular stability of the elbow. J. Should. Elb. Surg. 14(4):441–446, 2005.

    Article  Google Scholar 

  16. 16.

    Kumar, P., M. Oka, J. Toguchida, M. Kobayashi, E. Uchida, T. Nakamura, and K. Tanaka. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. J. Anat. 199(3):241–250, 2001.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kwak, S. D., J. Blankevoort, and G. A. Ateshian. A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3(1):41–64, 2000.

    Article  Google Scholar 

  18. 18.

    Liacouras, P. C., and J. S. Wayne. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129(6):811–817, 2007.

    Article  PubMed  Google Scholar 

  19. 19.

    Martin, C. H., and D. H. Lee. Explor® Modular Radial Head: Surgical Technique. Warsaw, IN: Biomet Orthopedics, Inc., 2008.

    Google Scholar 

  20. 20.

    Morrey, B. F. The Elbow and Its Disorders. Philadelphia: W.B. Saunders, p. 933, 2000.

    Google Scholar 

  21. 21.

    Morrey, B. F., and K.-N. An. Stability of the elbow: osseous constraints. J. Should. Elb. Surg. 14(1 Suppl):S174–S178, 2005.

    Article  Google Scholar 

  22. 22.

    Morrey, B. F., and R. C. Thompson Jr. Master Techniques in Orthopaedic Surgery: The Elbow. Philidephia, PA: Lippincott Williams & Williams, p. 432, 2002.

    Google Scholar 

  23. 23.

    Noda, K., A. Goto, T. Murase, K. Sugamoto, H. Yoshikawa, and H. Moritomo. Interosseous membrane of the forearm: an anatomical study of ligament attachment locations. J. Hand Surg. 34(3):415–422, 2009.

    Article  Google Scholar 

  24. 24.

    Pfaeffle, H. J., M. M. Tomaino, R. Grewal, J. Xu, N. D. Boardman, S. L.-Y. Woo, and J. H. Herndon. Tensile properties of the interosseous membrane of the humanforearm. J. Orthop. Res. 14:842–845, 1996.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Radin, E. L., and I. L. Paul. A consolidated concept of joint lubrication. J. Bone Joint Surg. Am. 54:607–616, 1972.

    CAS  PubMed  Google Scholar 

  26. 26.

    Regan, W. D., S. L. Korinek, and B. F. Morrey. Biomechanical study of ligaments around the elbow joint. Clin. Orthop. Relat. Res. 271:170–179, 1991.

    PubMed  Google Scholar 

  27. 27.

    Ring, D., J. B. Jupiter, and J. Zilberfarb. Posterior dislocation of the elbow with fractures of the radial head and coronoid. J. Bone Joint Surg. 84(4):547–551, 2002.

    PubMed  Google Scholar 

  28. 28.

    Schuind, A., et al. The distal radioulnar ligaments: a biomechanical study. J. Hand Surg. 16(6):1106–1114, 1991.

    CAS  Article  Google Scholar 

  29. 29.

    Werner, F. W., and A. K. Palmer. The triangular fibrocartilage complex of the wrist–anatomy and function. J. Hand Surg. 6(2):153–162, 1981.

    Google Scholar 

Download references


The authors would like to thank Dr. Curtis Hayes and the Department of Radiology at Virginia Commonwealth University for their assistance with the CT image captures.

Author information



Corresponding author

Correspondence to Jennifer S. Wayne.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spratley, E.M., Wayne, J.S. Computational Model of the Human Elbow and Forearm: Application to Complex Varus Instability. Ann Biomed Eng 39, 1084–1091 (2011).

Download citation


  • Lateral collateral ligament
  • Radial head
  • Coronoid process
  • Biomechanical
  • Joint contact
  • Ligament tension
  • CT
  • Three dimensional