Skip to main content
Log in

Three-Dimensional Cardiac Tissue Image Registration for Analysis of In Vivo Electrical Mapping

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A method is presented for registering 3D cardiac tissue images to reference data, for the purpose of analyzing recorded electrical activity. Following left-ventricular in vivo electrical mapping studies in pig hearts, MRI is used to define a reference geometry in the tissue segment around the recording electrodes. The segment is then imaged in 3D using a high-resolution serial imaging microscopy technique. The tissue processing required for this introduces segment-wide distortion. Piecewise-smooth maps are used to correct the tissue distortion and register the 3D images with the reference MRI data. The methods are validated and techniques for identifying the preferred maps are proposed. Recorded electrical activation is shown to map reliably onto cardiac tissue structure using this registration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Arsigny, V., X. Pennec, and N. Ayache. Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations—application to the registration of histological slices. Med. Image Anal. 9:507–523, 2005.

    Article  PubMed  Google Scholar 

  2. Besl, P. J., and R. C. Jain. Invariant surface characteristics for 3-d object recognition in range images. Comput. Vis. Graph Image Process. 33(1):33–80, 1986.

    Article  Google Scholar 

  3. Bookstein, F. L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. 11(6):567–585, 1989.

    Article  Google Scholar 

  4. Bradley, C. P., A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 25:96–111, 1997.

    Article  CAS  PubMed  Google Scholar 

  5. Breen, M. S., R. S. Lazebnik, and D. L. Wilson. Three-dimensional registration of magnetic resonance image data to histological sections with model-based evaluation. Ann. Biomed. Eng. 33(8):1100–1112, 2005.

    Article  PubMed  Google Scholar 

  6. Breen, M. S., T. L. Lancaster, and D. L. Wilson. Correcting spatial distortion in histological images. Comput. Med. Imaging Graph 29:405–417, 2005.

    Article  PubMed  Google Scholar 

  7. Brown, L. G. A survey of image registration techniques. ACM Comput. Surv. 24(4):325–376, 1992.

    Article  Google Scholar 

  8. Burton, R. A. B., G. Plank, J. E. Schneider, V. Grau, H. Ahammer, S. L. Keeling, J. Lee, N. P. Smith, D. Gavaghan, N. Trayanova, and P. Kohl. Three-dimensional models of individual cardiac histoanatomy: tools and challenges. Ann. N. Y. Acad. Sci. 1080:301–319, 2006.

    Article  PubMed  Google Scholar 

  9. Caldwell, B. J., M. L. Trew, G. B. Sands, D. A. Hooks, I. J. LeGrice, and B. H. Smaill. Three distinct directions of intramural activation reveal non-uniform side-to-side electrical coupling of ventricular myocytes. Circ. Arrhythm. Electrophysiol. 2:433–440, 2009.

    Article  PubMed  Google Scholar 

  10. Clarke, S. E., R. R. Hammond, J. R. Michell, and B. K. Rutt. Quantitative assessment of crotid plaque composition using multicontrast MRI and registered histology. Magn. Reson. Med. 50:1199–1208, 2003.

    Article  PubMed  Google Scholar 

  11. Davatzikos, C., J. L. Prince, and R. N. Bryan. Image registration based on boundary mapping. IEEE Trans. Med. Imaging 15(1):112–115, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. de Bakker, J. M. T., M. Stein, and H. V. M. van Rijen. Three-dimensional anatomic structure as a substrate for ventricular tachycardia/ventricular fibrillation. Heart Rhythm 2(7):777–779, 2005.

    Article  PubMed  Google Scholar 

  13. Fernandez, J. W., P. Mithraratne, S. Thrupp, M. H. Tawhai, and P. J. Hunter. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model Mechanobiol. 2(3):139–155, 2004.

    Article  CAS  PubMed  Google Scholar 

  14. Fox, C. H., F. B. Johnson, J. Whiting, and P. P. Roller. Formaldehyde fixation. J. Histochem. Cytochem. 33(8):845–853, 1985.

    CAS  PubMed  Google Scholar 

  15. Gerneke, D. A., G. B. Sands, R. Ganesalingam, P. Joshi, B. J. Caldwell, B. H. Smaill, and I. J. LeGrice. Surface imaging microscopy using an ultramiller for large volume 3D reconstruction of wax- and resin-embedded tissues. Microsc. Res. Tech. 70(10):886–894, 2007.

    Article  PubMed  Google Scholar 

  16. Helm, P. A., H. J. Tseng, L. Younes, E. R. McVeigh, and R. L. Winslow. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 54:850–859, 2005.

    Article  PubMed  Google Scholar 

  17. Herbin, M., A. Venot, J. Y. Devaux, E. Walter, J. F. Lebruchec, L. Dubertret, and J. C. Roucayrol. Automated registration of dissimilar images: application to medical imagery. Comput. Vis. Graph Image Process. 47:77–88, 1989.

    Article  Google Scholar 

  18. Jones, A. S., B. K. Milthorpe, and C. R. Howlett. Measurement of microtomy induced section distortion and its correction of 3-dimensional histological reconstructions. Cytometry 15:95–105, 1994.

    Article  CAS  PubMed  Google Scholar 

  19. Karlon, W. J., J. W. Covell, A. D. McCulloch, J. J. Hunter, and J. H. Omens. Automated measurement of myofiber disarray in transgenic mice with ventricular expression of Ras. Anat. Rec. 252:612–625, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Knupp, P. M. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I—a framework for surface mesh optimization. Int. J. Numer. Methods Eng. 48:401–420, 2000.

    Article  Google Scholar 

  21. Koenderink, J., and A. van Doorn. Surface shape and curvature scales. Image Vis. Comput. 10(8):557–665, 1992.

    Article  Google Scholar 

  22. Lazebnik, R. S., T. L. Lancaster, M. S. Breen, J. S. Lewin, and D. L. Wilson. Volume registration using needle paths and point landmarks for evaluation of interventional MRI treatments. IEEE Trans. Med. Imaging 22(5):653–660, 2003.

    Article  PubMed  Google Scholar 

  23. Maintz, J. B., and M. A. Viergever. A survey of medical image registration. Med. Image Anal. 2(1):1–36, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Mansoori, T., G. Plank, R. Burton, J. Schneider, P. Kohl, D. Gavaghan D, and V. Grau. An iterative method for registration of high-resolution cardiac histoanatomical and MRI images. In: Proceedings of 4th International Symposium on Biomedical Imaging, 2007, pp. 572–575.

  25. Plank, G., R. A. B. Burton, P. Hales, M. Bishop, T. Mansoori, M. O. Bernabeu, A. Garny, A. J. Prassl, C. Bollensdorff, F. Mason, F. Mahmood, B. Rodriguez, V. Grau, J. E. Schneider, D. Gavaghan, and P. Kohl. Generation of histo-anatomically representative models of the individual heart: tools and application. Philos. Trans. R. Soc. Lond. A 367:2257–2292, 2009.

    Article  Google Scholar 

  26. Ragan, T., J. D. Sylvan, K. H. Kim, H. Huang, K. Bahlmann, R. T. Lee, and P. T. C. So. High-resolution whole organ imaging using two-photon tissue cytometry. J. Biomed. Opt. 12(1):014015, 2007.

    Article  PubMed  Google Scholar 

  27. Sands, G. B., D. A. Gerneke, D. A. Hooks, C. R. Green, B. H. Smaill, and I. J. LeGrice. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67:227–239, 2005.

    Article  PubMed  Google Scholar 

  28. Streicher, J., W. J. Weninger, and G. B. Müller. External marker-based automatic congruencing: a new method of 3D reconstruction from serial sections. Anat. Rec. 248:583–602, 1997.

    Article  CAS  PubMed  Google Scholar 

  29. Terzopoulos, D. Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Anal. 8(4):413–424, 1986.

    Article  Google Scholar 

  30. Tiknonov, A. N., and V. Y. Arsenin. Solutions of Ill-Posed Problems. Washington, DC: Winston & Sons, 1977.

    Google Scholar 

  31. Tikhonov, A. N., A. S. Leonov, and A. G. Yagola. Nonlinear Ill-Posed Problems (Volume 1). London: Chapman & Hall, 1998.

    Google Scholar 

  32. Weninger, W. J., and T. Mohun. Phenotyping transgenic embroyos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat. Genet. 30:59–65, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y., D. B. Goldgof, and S. Sarkar. Towards physically-sound registration using object-specific properties for regularization. Lect. Notes Comput. Sci. 2717:358–366, 2003.

    Article  Google Scholar 

  34. Zitová, B., and J. Flusser. Image registration methods: a survey. Image Vis. Comput. 21:977–1000, 2003.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Health Research Council of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Trew.

Additional information

Associate Editor Ioannis A. Kakadiaris oversaw the review of this article.

Appendix

Appendix

To ensure a unique CMap for an underdetermined problem, the admissible space was restricted from the full tricubic-Hermite space by a curvature norm. The norm is constructed by considering the curvature of the iso-surfaces of each normalized coordinate embedded in the CMap. These surfaces are ξ 12, ξ 13, and ξ 23 (Fig. 2). The distance residual of a point before, x, and after, X, applying a CMap is given by:

$$ {\mathbf{u}} = {\mathbf{X}} - {\mathbf{x}} = \Uppsi^{j} \left( {{\hat{\mathbf{X}}}^{j} - {\hat{\mathbf{x}}}^{j} } \right). $$
(A.1)

A Hessian for the second derivatives of the Cartesian coordinates on the ξ 12, ξ 13, and ξ 23 surfaces, based on the distance residual, u, is:

$$ {\hat{\mathbf{H}}}_{ij} = \left[ {\begin{array}{*{20}c} {\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{i} }}}} \right\|} & {\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{j} }}}} \right\|} \\ {\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{j} }}}} \right\|} & {\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{j} \partial \xi_{j} }}}} \right\|} \\ \end{array} } \right] $$
(A.2)

where \( \Vert \cdot \Vert \) denotes the L2 norm of the vector quantity. The first and second eigenvalues of \( {\hat{\mathbf{H}}}_{ij} \) are denoted as k 1 and k 2. Two indicators of surface shape can be formed from these eigenvalues2:

$$ {\text{Gaussian }}{\text{curvature: }} K_{ij} = k_{1} \times k_{2} = { \det }\left( {{\hat{\mathbf{H}}}_{ij} } \right) $$
$$ {\text{Mean }}{\text{curvature: }} H_{ij} = {\frac{{k_{1} + k_{2} }}{2}} = \frac{1}{2}{\text{tr}}\left( {{\hat{\mathbf{H}}}_{ij} } \right) $$

These two quantities can be related by the deviation from flatness of the surface, C ij 21:

$$ \begin{aligned} C_{ij} = k_{1}^{2} + k_{2}^{2} & = \left( {2H_{ij} } \right)^{2} - 2K_{ij} \\ & = \left( {{\text{tr}}\left( {\hat{\mathbf{H}}_{ij} } \right)} \right)^{2} - 2{ \det }\left( {\hat{\mathbf{H}}_{ij} } \right) \\ & = \left( {\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{i} }}}} \right\| + \left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{j} \partial \xi_{j} }}}} \right\|} \right)^{2} - 2\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{i} }}}} \right\|\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{j} \partial \xi_{j} }}}} \right\| + 2\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{j} }}}} \right\|^{2} \\ & = \left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{i} }}}} \right\|^{2} + 2\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{i} \partial \xi_{j} }}}} \right\|^{2} + \left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{j} \partial \xi_{j} }}}} \right\|^{2} . \\ \end{aligned} $$
(A.3)

A weighted norm for the curvature in the ij plane of the CMap is:

$$ N_{ij} = \int\limits_{\Upomega } {W_{ij} C_{ij} {\text{d}}\Upomega } . $$
(A.4)

The weighted contribution of all planes to the CMap, Q, is:

$$ \begin{gathered} Q({\mathbf{u}}) = \int\limits_{\Upomega } {\left[ {W_{12} C_{12} + W_{13} C_{13} + W_{23} C_{23} } \right]} {\text{d}}\Upomega \hfill \\ = \int\limits_{\Upomega } {\left[ {\left( {W_{12} + W_{13} } \right)\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{1}^{2} }}}} \right\|^{2} + \left( {W_{12} + W_{23} } \right)\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{2}^{2} }}}} \right\|^{2} + \left( {W_{13} + W_{23} } \right)\left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{3}^{2} }}}} \right\|^{2} + } \right.} \hfill \\ \left. {\quad 2W_{12} \left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{1} \partial \xi_{2} }}}} \right\|^{2} + 2W_{13} \left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{1} \partial \xi_{3} }}}} \right\|^{2} + 2W_{23} \left\| {{\frac{{\partial^{2} {\mathbf{u}}}}{{\partial \xi_{2} \partial \xi_{3} }}}} \right\|^{2} } \right]{\text{d}}\Upomega . \hfill \\ \end{gathered} $$
(A.5)

Here the weights are a per-volume weighting, i.e., units of mm−3.

The domain of integration of the curvature norm is transformed to the normalized (dimensionless) space of local element coordinates in the normal finite element sense. The element curvature norm is:

$$ \begin{gathered} Q = \sum\limits_{e} {\int\limits_{0}^{1} {\left[ {\left( {W_{12} + W_{13} } \right){\frac{{\partial^{2} u_{i} }}{{\partial \xi_{1}^{2} }}}{\frac{{\partial^{2} u_{i} }}{{\partial \xi_{1}^{2} }}} + \left( {W_{12} + W_{23} } \right){\frac{{\partial^{2} u_{i} }}{{\partial \xi_{2}^{2} }}}{\frac{{\partial^{2} u_{i} }}{{\partial \xi_{2}^{2} }}} + \left( {W_{13} + W_{23} } \right){\frac{{\partial^{2} u_{i} }}{{\partial \xi_{3}^{2} }}}{\frac{{\partial^{2} u_{i} }}{{\partial \xi_{3}^{2} }}}} \right.} } + \hfill \\ \left. {\quad 2W_{12} {\frac{{\partial^{2} u_{i} }}{{\partial \xi_{1} \partial \xi_{2} }}}{\frac{{\partial^{2} u_{i} }}{{\partial \xi_{1} \partial \xi_{2} }}} + 2W_{13} {\frac{{\partial^{2} u_{i} }}{{\partial \xi_{1} \partial \xi_{3} }}}{\frac{{\partial^{2} u_{i} }}{{\partial \xi_{1} \partial \xi_{3} }}} + 2W_{23} {\frac{{\partial^{2} u_{i} }}{{\partial \xi_{2} \partial \xi_{3} }}}{\frac{{\partial^{2} u_{i} }}{{\partial \xi_{2} \partial \xi_{3} }}}} \right]\left| J \right|{\text{d}}{\varvec{\upxi}}. \hfill \\ \end{gathered} $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trew, M.L., Caldwell, B.J., Sands, G.B. et al. Three-Dimensional Cardiac Tissue Image Registration for Analysis of In Vivo Electrical Mapping. Ann Biomed Eng 39, 235–248 (2011). https://doi.org/10.1007/s10439-010-0163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0163-7

Keywords