Skip to main content
Log in

Differential Response of Endothelial Cells to Simvastatin When Conditioned with Steady, Non-Reversing Pulsatile or Oscillating Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Few studies have investigated whether fluid mechanics can impair or enhance endothelial cell response to pharmacological agents such as statin drugs. We evaluated and compared Kruppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and thrombomodulin (TM) expression in human abdominal aortic endothelial cells (HAAEC) treated with increasing simvastatin concentrations (0.1, 1 or 10 μM) under static culture and shear stress (steady, non-reversing pulsatile, and oscillating). Simvastatin, steady flow, and non-reversing pulsatile flow each separately upregulated KLF2, eNOS, and TM mRNA. At lower simvastatin concentrations (0.1 and 1 μM), the combination of statin and unidirectional steady or pulsatile flow produced an overall additive increase in mRNA levels. At higher simvastatin concentration (10 μM), a synergistic increase in eNOS and TM mRNA expression was observed. In contrast, oscillating flow impaired KLF2 and TM, but not eNOS expression by simvastatin at 1 μM. A higher simvastatin concentration of 10 μM overcame the inhibitory effect of oscillating flow. Our findings suggest that oscillating shear stress renders the endothelial cells less responsive to simvastatin than cells exposed to unidirectional steady or pulsatile flow. Consequently, the pleiotropic effects of statins in vivo may be less effective in endothelial cells exposed to atheroprone hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figurer 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ali, F., S. S. Hamdulay, A. R. Kinderlerer, J. J. Boyle, E. A. Lidington, T. Yamaguchi, M. P. Soares, D. O. Haskard, A. M. Randi, and J. C. Mason. Statin-mediated cytoprotection of human vascular endothelial cells: a role for Kruppel-like factor 2-dependent induction of heme oxygenase-1. J. Thromb. Haemost. 5:2537–2546, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Ali, F., M. Zakkar, K. Karu, E. A. Lidington, S. S. Hamdulay, J. J. Boyle, M. Zloh, A. Bauer, D. O. Haskard, P. C. Evans, and J. C. Mason. Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J. Biol. Chem. 284:18882–18892, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1045–1066, 1990.

    CAS  PubMed  Google Scholar 

  4. Bellosta, S., R. Paoletti, and A. Corsini. Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation 109:III50–III57, 2004.

    Article  PubMed  Google Scholar 

  5. Bergh, N., E. Ulfhammer, L. Karlsson, and S. Jern. Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment. Endothelium 15:231–238, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Blackman, B. R., G. Garcia-Cardena, and M. A. Gimbrone, Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124:397–407, 2002.

    Article  PubMed  Google Scholar 

  7. Butcher, J. T., and R. M. Nerem. Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos. Trans. R. Soc. Lond. 362:1445–1457, 2007.

    Article  CAS  Google Scholar 

  8. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. 292:H1209–H1224, 2007.

    CAS  Google Scholar 

  9. Corti, R., V. Fuster, J. J. Badimon, R. Hutter, and Z. A. Fayad. New understanding of atherosclerosis (clinically and experimentally) with evolving MRI technology in vivo. Ann. NY Acad. Sci. 947:181–195, 2001 (discussion 195–8).

    Article  CAS  PubMed  Google Scholar 

  10. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101:14871–14876, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Davis, M. E., H. Cai, G. R. Drummond, and D. G. Harrison. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ. Res. 89:1073–1080, 2001.

    Article  CAS  PubMed  Google Scholar 

  12. DeBakey, M. E., G. M. Lawrie, and D. H. Glaeser. Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201:115–131, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Dekker, R. J., S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. Horrevoets. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Dekker, R. J., J. V. van Thienen, J. Rohlena, S. C. de Jager, Y. W. Elderkamp, J. Seppen, C. J. de Vries, E. A. Biessen, T. J. van Berkel, H. Pannekoek, and A. J. Horrevoets. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am. J. Pathol. 167:609–618, 2005.

    CAS  PubMed  Google Scholar 

  15. Dekker, R. J., R. A. Boon, M. G. Rondaij, A. Kragt, O. L. Volger, Y. W. Elderkamp, J. C. Meijers, J. Voorberg, H. Pannekoek, and A. J. Horrevoets. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107:4354–4363, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Farcas, M. A., L. Rouleau, R. Fraser, and R. L. Leask. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomed. Eng. Online 8:30, 2009.

    Article  PubMed  Google Scholar 

  17. Fledderus, J. O., J. V. van Thienen, R. A. Boon, R. J. Dekker, J. Rohlena, O. L. Volger, A. P. Bijnens, M. J. Daemen, J. Kuiper, T. J. van Berkel, H. Pannekoek, and A. J. Horrevoets. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 109:4249–4257, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Cardena, G., and M. A. Gimbrone, Jr. Biomechanical modulation of endothelial phenotype: implications for health and disease. Handb. Exp. Pharmacol. 176:79–95, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. USA 98:4478–4485, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Grottum, P., A. Svindland, and L. Walloe. Localization of atherosclerotic lesions in the bifurcation of the main left coronary artery. Atherosclerosis 47:55–62, 1983.

    Article  CAS  PubMed  Google Scholar 

  21. Jain, M. K., and P. M. Ridker. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4:977–987, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  23. Kubes, P., M. Suzuki, and D. N. Granger. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl Acad. Sci. USA 88:4651–4655, 1991.

    Article  CAS  PubMed  Google Scholar 

  24. Landmesser, U., F. Bahlmann, M. Mueller, S. Spiekermann, N. Kirchhoff, S. Schulz, C. Manes, D. Fischer, K. de Groot, D. Fliser, G. Fauler, W. Marz, and H. Drexler. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation 111:2356–2363, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Laufs, U., and J. K. Liao. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem. 273:24266–24271, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Laufs, U., V. La Fata, J. Plutzky, and J. K. Liao. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135, 1998.

    CAS  PubMed  Google Scholar 

  27. Laufs, U., K. Gertz, U. Dirnagl, M. Bohm, G. Nickenig, and M. Endres. Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res. 942:23–30, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    Article  CAS  PubMed  Google Scholar 

  29. Liao, J. K. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am. J. Cardiol. 96:24F–33F, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, Z., A. Kumar, S. SenBanerjee, K. Staniszewski, K. Parmar, D. E. Vaughan, M. A. Gimbrone, Jr., V. Balasubramanian, G. Garcia-Cardena, and M. K. Jain. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ. Res. 96:e48–e57, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Lin, S. J., Y. H. Chen, F. Y. Lin, L. Y. Hsieh, S. H. Wang, C. Y. Lin, Y. C. Wang, H. H. Ku, J. W. Chen, and Y. L. Chen. Pravastatin induces thrombomodulin expression in TNFalpha-treated human aortic endothelial cells by inhibiting Rac1 and Cdc42 translocation and activity. J. Cell. Biochem. 101:642–653, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Luvara, G., M. E. Pueyo, M. Philippe, C. Mandet, F. Savoie, D. Henrion, and J. B. Michel. Chronic blockade of NO synthase activity induces a proinflammatory phenotype in the arterial wall: prevention by angiotensin II antagonism. Arterioscler. Thromb. Vasc. Biol. 18:1408–1416, 1998.

    CAS  PubMed  Google Scholar 

  33. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Masamura, K., K. Oida, H. Kanehara, J. Suzuki, S. Horie, H. Ishii, and I. Miyamori. Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family. Arterioscler. Thromb. Vasc. Biol. 23:512–517, 2003.

    Article  CAS  PubMed  Google Scholar 

  35. McFarlane, S. I., R. Muniyappa, R. Francisco, and J. R. Sowers. Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond. J. Clin. Endocrinol. Metab. 87:1451–1458, 2002.

    Article  CAS  PubMed  Google Scholar 

  36. Morikawa, S., W. Takabe, C. Mataki, T. Kanke, T. Itoh, Y. Wada, A. Izumi, Y. Saito, T. Hamakubo, and T. Kodama. The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. Human umbilical vein endothelial cells. J. Atheroscler. Thromb. 9:178–183, 2002.

    CAS  PubMed  Google Scholar 

  37. O’Driscoll, G., D. Green, and R. R. Taylor. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 95:1126–1131, 1997.

    PubMed  Google Scholar 

  38. O’Keefe, J. H., M. D. Carter, and C. J. Lavie. Primary and secondary prevention of cardiovascular diseases: a practical evidence-based approach. Mayo Clin. Proc. 84:741–757, 2009.

    Article  PubMed  Google Scholar 

  39. Ohura, N., K. Yamamoto, S. Ichioka, T. Sokabe, H. Nakatsuka, A. Baba, M. Shibata, T. Nakatsuka, K. Harii, Y. Wada, T. Kohro, T. Kodama, and J. Ando. Global analysis of shear stress-responsive genes in vascular endothelial cells. J. Atheroscler. Thromb. 10:304–313, 2003.

    CAS  PubMed  Google Scholar 

  40. Parmar, K. M., V. Nambudiri, G. Dai, H. B. Larman, M. A. Gimbrone, Jr., and G. Garcia-Cardena. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 280:26714–26719, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Rossi, J., L. Rouleau, J. C. Tardif, and R. L. Leask. Effect of simvastatin on Kruppel-like factor2, endothelial nitric oxide synthase and thrombomodulin expression in endothelial cells under shear stress. Life Sci. 87:92–99, 2010.

    Article  CAS  PubMed  Google Scholar 

  42. Rouleau, L., J. Rossi, and R. L. Leask. Concentration and time effects of dextran exposure on endothelial cell viability, attachment, and inflammatory marker expression in vitro. Ann. Biomed. Eng. 38:1451–1462, 2010.

    Article  PubMed  Google Scholar 

  43. Rouleau, L., J. Rossi, and R. L. Leask. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude, and spatial gradients in wall shear stress. J. Biomech. Eng. 132, 2010. doi:10.1115/1.4001217.

  44. Sacks, F. M., M. A. Pfeffer, L. A. Moye, J. L. Rouleau, J. D. Rutherford, T. G. Cole, L. Brown, J. W. Warnica, J. M. Arnold, C. C. Wun, B. R. Davis, and E. Braunwald. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 335:1001–1009, 1996.

    Article  CAS  PubMed  Google Scholar 

  45. Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam. Clin. Pharmacol. 19:117–125, 2005.

    Article  CAS  PubMed  Google Scholar 

  46. Schonbeck, U., and P. Libby. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation 109:II18–II26, 2004.

    Article  PubMed  Google Scholar 

  47. Sen-Banerjee, S., S. Mir, Z. Lin, A. Hamik, G. B. Atkins, H. Das, P. Banerjee, A. Kumar, and M. K. Jain. Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726, 2005.

    Article  CAS  PubMed  Google Scholar 

  48. Shi, J., J. Wang, H. Zheng, W. Ling, J. Joseph, D. Li, J. L. Mehta, U. Ponnappan, P. Lin, L. M. Fink, and M. Hauer-Jensen. Statins increase thrombomodulin expression and function in human endothelial cells by a nitric oxide-dependent mechanism and counteract tumor necrosis factor alpha-induced thrombomodulin downregulation. Blood Coagul. Fibrinolysis 14:575–585, 2003.

    Article  CAS  PubMed  Google Scholar 

  49. Thebaud, N. B., R. Bareille, R. Daculsi, C. Bourget, M. Remy, H. Kerdjoudj, P. Menu, and L. Bordenave. Polyelectrolyte multilayer films allow seeded human progenitor-derived endothelial cells to remain functional under shear stress in vitro. Acta Biomater. 6:1437–1445, 2010.

    Article  CAS  PubMed  Google Scholar 

  50. van Thienen, J. V., J. O. Fledderus, R. J. Dekker, J. Rohlena, G. A. van Ijzendoorn, N. A. Kootstra, H. Pannekoek, and A. J. Horrevoets. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc. Res. 72:231–240, 2006.

    Article  PubMed  Google Scholar 

  51. Young, A., W. Wu, W. Sun, H. B. Larman, N. Wang, Y. S. Li, J. Y. Shyy, S. Chien, and G. Garcia-Cardena. Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler. Thromb. Vasc. Biol. 29:1902–1908, 2009.

    Article  CAS  PubMed  Google Scholar 

  52. Ziegler, T., K. Bouzourene, V. J. Harrison, H. R. Brunner, and D. Hayoz. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18:686–692, 1998.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Council of Canada (NSERC), les Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Canadian Institutes of Health Research (CIHR), the William Dawson Fund, the McGill Engineering Doctoral Award (MEDA), the Canadian Foundation for Innovation (CFI), the Eugenie Ulmer Lamothe Fund (EUL), and the Vadasz Family Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Leask.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, J., Jonak, P., Rouleau, L. et al. Differential Response of Endothelial Cells to Simvastatin When Conditioned with Steady, Non-Reversing Pulsatile or Oscillating Shear Stress. Ann Biomed Eng 39, 402–413 (2011). https://doi.org/10.1007/s10439-010-0145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0145-9

Keywords