Skip to main content

Advertisement

Log in

Optimizing Local Capture of Atrial Fibrillation by Rapid Pacing: Study of the Influence of Tissue Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While successful termination by pacing of organized atrial tachycardias has been observed in patients, rapid pacing of AF can induce a local capture of the atrial tissue but in general no termination. The purpose of this study was to perform a systematic evaluation of the ability to capture AF by rapid pacing in a biophysical model of the atria with different dynamics in terms of conduction velocity (CV) and action potential duration (APD). Rapid pacing was applied during 30 s at five locations on the atria, for pacing cycle lengths in the range 60–110% of the mean AF cycle length (AFCLmean). Local AF capture could be achieved using rapid pacing at pacing sites located distal to major anatomical obstacles. Optimal pacing cycle lengths were found in the range 74–80% AFCLmean (capture window width: 14.6 ± 3% AFCLmean). An increase/decrease in CV or APD led to a significant shrinking/stretching of the capture window. Capture did not depend on AFCL, but did depend on the atrial substrate as characterized by an estimate of its wavelength, a better capture being achieved at shorter wavelengths. This model-based study suggests that a proper selection of the pacing site and cycle length can influence local capture results and that atrial tissue properties (CV and APD) are determinants of the response to rapid pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allessie, M., C. Kirchhof, G. J. Scheffer, F. Chorro, and J. Brugada. Regional control of atrial fibrillation by rapid pacing in conscious dogs. Circulation 84:1689–1697, 1991.

    CAS  PubMed  Google Scholar 

  2. Bode, F., M. Kilborn, P. Karasik, and M. R. Franz. The repolarization-excitability relationship in human right atrium is unaffected by cycle length, recording site and prior arrhythmias. J. Am. Coll. Cardiol. 37:920–925, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Capucci, A., F. Ravelli, G. Nollo, A. S. Montenero, M. Biffi, and G. Q. Villani. Capture window in human atrial fibrillation: evidence of an excitable gap. J. Cardiovasc. Electrophysiol. 10:319–327, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Carlson, M. D., J. Ip, J. Messenger, et al. A new pacemaker algorithm for the treatment of atrial fibrillation. Results of the atrial dynamic overdrive pacing trial (ADOPT). J. Am. Coll. Cardiol. 42:627–633, 2003.

    Article  PubMed  Google Scholar 

  5. Daoud, E. G., B. Pariseau, M. Niebauer, et al. Response to Type I atrial fibrillation to atrial pacing in humans. Circulation 94:1036–1040, 1996.

    CAS  PubMed  Google Scholar 

  6. Ellenbogen, K. A. Pacing therapy for prevention of atrial fibrillation. Heart Rhythm 4:S84–S87, 2007.

    Article  PubMed  Google Scholar 

  7. Gillis, A. M., J. Koehler, M. Morck, R. Mehra, and D. A. Hettrick. High atrial antitachycardia pacing therapy efficacy is associated with a reduction in atrial tachyarrythmis burden in a subset of patients with sinus node dysfunction and paroxysmal atrial fibrillation. Heart Rhythm 2:791–796, 2005.

    Article  PubMed  Google Scholar 

  8. Gold, M. R., S. Adler, L. Fauchier, et al. Impact on atrial prevention pacing on atrial fibrillation burden: primary results of the study of atrial fibrillation reduction (SAFARI) trial. Heart Rhythm 6:295–301, 2009.

    Article  PubMed  Google Scholar 

  9. Gulizia, M., S. Mangiameli, S. Orazi, et al. Randomized comparison between Ramp and Burst + atrial antitachycardia pacing therapies in patients suffering from sinus node disease and atrial fibrillation and implanted with a DDDRP device. Europace 8:465–473, 2006.

    Article  PubMed  Google Scholar 

  10. Harrild, D., and C. Henriquez. A computer model of normal conduction in the human atria. Circ. Res. 87:e25–e36, 2000.

    CAS  PubMed  Google Scholar 

  11. Jacquemet, V., N. Virag, Z. Ihara, L. Dang, O. Blanc, S. Zozor, J.-M. Vesin, L. Kappenberger, and C. Henriquez. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc. Electrophysiol. 14:S172–S179, 2003.

    Article  PubMed  Google Scholar 

  12. Jacquemet, V., N. Virag, and L. Kappenberger. Wavelength and vulnerability to atrial fibrillation: insights from a computer model of human atria. Europace 7:S83–S92, 2005.

    Article  Google Scholar 

  13. Janko, S. Hoffmann. Atrial antitachycardia pacing: do we still need to talk about it? Europace 11:977–979, 2009.

    Article  PubMed  Google Scholar 

  14. Kalman, J. M., J. E. Olgin, M. R. Karch, and M. D. Lesh. Regional entrainment of atrial fibrillation in man. J. Cardiovasc. Electrophysiol. 7:867–876, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, B.-S., Y.-H. Kim, G.-S. Hwang, et al. Action potential duration restitution kinetics in human atrial fibrillation. J. Am. Coll. Cardiol. 39:1329–1336, 2002.

    Article  PubMed  Google Scholar 

  16. Kirchhof, C., F. Chorro, G. J. Scheffer, et al. Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs. Circulation 88:736–749, 1993.

    CAS  PubMed  Google Scholar 

  17. Knight, B. P., B. J. Gersh, M. Carlson, et al. Role of permanent pacing to prevent atrial fibrillation. Science advisory from the American Heart Association council on clinical cardiology (subcommittee on electrocardiography and arrhythmias) and the quality of care and outcomes research interdisciplinary working group, in the collaboration with the Heart Rhythm Society. Circulation 111:240–243, 2005.

    Article  PubMed  Google Scholar 

  18. Konings, K. T., C. J. Kirchhof, J. R. Smeets, H. J. Wellens, O. C. Penn, and M. A. Allessie. High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89:1665–1680, 1994.

    CAS  PubMed  Google Scholar 

  19. Lines, G. T., M. C. MacLachlan, S. Linge, and A. Tveito. Synchronizing computer simulations with measurement data for a case of atrial flutter. Ann. Biomed. Eng. 37:1287–1293, 2009.

    Article  PubMed  Google Scholar 

  20. Luo, C.-H., and Y. Rudy. A model of ventricular cardiac action potential. Circ. Res. 68:1501–1526, 1991.

    CAS  PubMed  Google Scholar 

  21. Padeletti, L., H. Puererfellner, S. W. Adler, et al. Combined efficacy of atrial septal lead placement and atrial pacing algorithms for prevention of paroxysmal atrial tachyarrhythmia. J. Cardiovasc. Electrophysiol. 14:1189–1195, 2003.

    Article  PubMed  Google Scholar 

  22. Pandozi, C., L. Bianconi, M. Villani, et al. Local capture by atrial pacing in spontaneous chronic atrial fibrillation. Circulation 95:2416–2422, 1997.

    CAS  PubMed  Google Scholar 

  23. Redfearn, D. P., and R. Yee. Pacing delivered rate and rhythm control for atrial fibrillation. Curr. Opin. Cardiol. 21:83–87, 2006.

    Article  PubMed  Google Scholar 

  24. Reumann, M., J. Bohnert, G. Seeman, B. Osswals, and O. Doössel. Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans. Biomed. Eng. 55:399–406, 2008.

    Article  PubMed  Google Scholar 

  25. Ruchat, P., L. Dang, N. Virag, L. K. von Segesser, and L. Kappenberger. Use of a biophysical model of atrial fibrillation in the interpretation of the outcomes of surgical ablation procedures. Eur. J. Cardiothorac. Surg. 32:90–95, 2007.

    Article  PubMed  Google Scholar 

  26. Shao, H., K. J. Sampson, J. B. Pormann, D. J. Rose, and C. S. Henriquez. A resistor interpretation of general anisotropic cardiac tissue. Math. Biosci. 187:155–174, 2004.

    Article  PubMed  Google Scholar 

  27. Vigmond, E. J., V. Tsoi, S. Kuo, H. Arvalo, J. Kneller, S. Nattel, and N. Trayanova. The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm 1:334–344, 2004.

    Article  PubMed  Google Scholar 

  28. Virag, N., V. Jacquemet, C. S. Henriquez, S. Zozor, O. Blanc, J.-M. Vesin, E. Pruvot, and L. Kappenberger. Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12:754–763, 2002.

    Article  PubMed  Google Scholar 

  29. Zozor, S., O. Blanc, V. Jacquemet, N. Virag, J.-M. Vesin, E. Pruvot, L. Kappenberger, and C. Henriquez. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans. Biomed. Eng. 50:412–420, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swiss Governmental Commission of Innovative Technologies (CTI, Bern, Switzerland) and Medtronic Europe (Tolochenaz, Switzerland). The authors thank Ryan Lahm, Drs. Josée Morisette, and Arthur Stillman who kindly furnished the atrial geometry surface model. Authors also thank Prof. Adriaan van Oosterom for his assistance in finalizing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Virag.

Additional information

Associate Editor Leonidas D. Iasemidis oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uldry, L., Virag, N., Jacquemet, V. et al. Optimizing Local Capture of Atrial Fibrillation by Rapid Pacing: Study of the Influence of Tissue Dynamics. Ann Biomed Eng 38, 3664–3673 (2010). https://doi.org/10.1007/s10439-010-0122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0122-3

Keywords

Navigation