Abstract
A robust method for inducing bone formation from cultured dental mesenchymal cells has not been established. In this study, a method for generating bone tissue in vivo from cultured human dental pulp- and periodontal ligament-derived cells (DPCs and PDLCs, respectively) was designed using exogenous bone morphogenetic protein 2 (BMP2). DPCs and PDLCs showed enhanced alkaline phosphatase (ALP) activity and calcified nodule formation in medium containing dexamethasone, β-glycerophosphate, and ascorbic acid (osteogenic medium). However, the addition of recombinant human bone morphogenetic protein 2 (rhBMP2) to osteogenic medium remarkably increased ALP activity and in vitro calcification above the increases observed with osteogenic medium alone. rhBMP2 also significantly upregulated the expression of osteocalcin, osteopontin, and dentin matrix protein 1 mRNA in both cell types cultured in osteogenic medium. Finally, we detected prominent bone-like tissue formation in vivo when cells had been exposed to rhBMP2 in osteogenic medium. In contrast, treatments with osteogenic medium or rhBMP2 alone could not induce abundant mineralized tissue formation. We propose here that treatment with rhBMP2 in osteogenic medium can make dental mesenchymal tissues a highly useful source of cells for bone tissue engineering. In addition, both DPCs and PDLCs showed similar and remarkable osteo-inducibility.







Similar content being viewed by others
References
Agata, H., I. Asahina, Y. Yamazaki, M. Uchida, Y. Shinohara, M. J. Honda, H. Kagami, and M. Ueda. Effective bone engineering with periosteum-derived cells. J. Dent. Res. 86:79–83, 2007.
Arora, V., P. Arora, and A. K. Munshi. Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J. Clin. Pediatr. Dent. 33:289–294, 2009.
Asahina, I., T. K. Sampath, I. Nishimura, and P. V. Hauschka. Human osteogenic protein-1 induces both chondroblastic and osteoblasic differentiation of osteoprogenitor cells derived from newbone rat calvaria. J. Cell Biol. 123:921–933, 1993.
Breitbart, A. S., D. A. Grande, R. Kessler, J. T. Ryaby, R. J. Fitzsimmons, and R. T. Grant. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast. Reconstr. Surg. 101:567–574, 1998.
Cabral, M. C., M. A. Costa, and M. H. Fernandes. In vitro models of periodontal cells: a comparative study of long-term gingival, periodontal ligament and alveolar bone cell cultures in the presence of beta-glycerophosphate and dexamethasone. J. Mater. Sci. Mater. Med. 18:1079–1088, 2007.
Chung, I. H., T. Yamaza, H. Zhao, P. H. Choung, S. Shi, and Y. Chai. Stem cell property of postmigratory cranial neural crest cell their utility in alveolar bone regeneration and tooth development. Stem Cells 27:866–877, 2009.
d’Aquino, R., A. De Rosa, V. Lanza, V. Tirino, L. Laino, A. Graziano, V. Desiderio, G. Laino, and G. Papaccio. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur. Cell Mater. 18:75–83, 2009.
Graziano, A., R. d’Aquino, G. Laino, and G. Papaccio. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev. 4:21–26, 2008.
Hiraga, T., T. Ninomiya, A. Hosoya, M. Takahashi, and H. Nakamura. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats. J. Bone Miner. Metab. 27:149–157, 2009.
Hou, L. T., T. I. Li, C. M. Liu, B. Y. Liu, C. L. Liu, and H. W. Mi. Modulation of osteogenic potential by recombinant human bone morphogenic protein-2 in human periodontal ligament cells: effect of serum, culture medium, and osteoinductive medium. J. Periodontal Res. 42:244–252, 2007.
Iohara, K., M. Nakashima, M. Ito, M. Ishikawa, A. Nakashima, and A. Akamine. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J. Dent. Res. 83:590–595, 2004.
Iohara, K., L. Zheng, H. Wake, M. Ito, J. Nabekura, H. Wakita, H. Nakamura, T. Into, K. Matsushita, and M. Nakashima. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26:2408–2418, 2008.
Jäger, M., J. Fischer, W. Dohrn, X. Li, D. C. Ayers, A. Czibere, W. C. Prall, S. Lensing-Höhn, and R. Krauspe. Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. J. Orthop. Res. 26:1440–1448, 2008.
Jørgensen, N. R., Z. Henriksen, O. H. Sørensen, and R. Civitelli. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69:219–226, 2004.
Jung, R. E., R. Glauser, P. Scharer, C. Hammerle, H. F. Sailer, and F. E. Weber. Effect of rhBMP-2 on guided bone regeneration in humans. Clin. Oral Implants Res. 14:556–568, 2003.
Kim, I. S., Y. M. Song, T. H. Cho, Y. D. Park, K. B. Lee, I. Noh, F. Weber, and S. J. Hwang. In vitro response of primary human bone marrow stromal cells to recombinant human bone morphogenic protein-2 in the early and late stages of osteoblast differentiation. Dev. Growth Differ. 50:553–564, 2008.
Maegawa, N., M. Kawamura, M. Hirose, H. Yajima, Y. Takakura, and H. Ohgushi. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J. Tissue Eng. Regen. Med. 1:306–313, 2007.
Markopoulou, C. E., I. A. Vrotsos, H. N. Vavouraki, X. E. Dereka, and Z. S. Mantzavinos. Human periodontal ligament cell responses to recombinant human bone morphogenetic protein-2 with and without bone allografts. J. Periodontol. 74:982–989, 2003.
Matsubara, T., K. Suardita, M. Ishii, M. Sugiyama, A. Igarashi, R. Oda, M. Nishimura, M. Saito, K. Nakagawa, K. Yamanaka, K. Miyazaki, M. Shimizu, U. K. Bhawal, K. Tsuji, K. Nakamura, and Y. Kato. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J. Bone Miner. Res. 20:399–409, 2004.
Matsui, S., H. Takeuchi, Y. Tsujimoto, and K. Matsushima. Effects of Smads and BMPs induced by Ga–Al–As laser irradiation on calcification ability of human dental pulp cells. J. Oral Sci. 50:75–81, 2008.
Miura, M., S. Gronthos, M. Zhao, B. Lu, F. W. Fisher, P. G. Robey, and S. Shi. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl Acad. Sci. USA 100:5807–5812, 2003.
Nakamura, A., Y. Dohi, M. Akahane, H. Ohgushi, H. Nakajima, H. Funaoka, and Y. Takakura. Osteocalcin secretion as an early marker of in vitro osteogenic differentiation of rat mesenchymal stem cells. Tissue Eng. C 15:169–180, 2009.
Nakamura, S., Y. Yamada, W. Katagiri, T. Sugito, K. Ito, and M. Ueda. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J. Endod. 35:1536–1542, 2009.
Patel, W., L. Zhao, P. Wong, B. B. Pradhan, H. W. Bae, L. Kanim, and R. B. Delamarter. An in vitro and in vivo analysis of fibrin glue use to control bone morphogenetic protein diffusion and bone morphogenetic protein-stimulated bone growth. Spine J. 6:397–403, 2006.
Perka, C., O. Schultz, R. S. Spitzer, K. Lindenharyn, G. R. Burmester, and M. Sittinger. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21:1145–1153, 2000.
Saito, Y., T. Yoshizawa, F. Takizawa, M. Ikegame, O. Ishibashi, K. Okuda, K. Hara, K. Ishibashi, M. Obinata, and H. Kawashima. A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2. J. Cell Sci. 115:4191–4200, 2002.
Saito, T., M. Ogawa, Y. Hata, and K. Bessho. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J. Endod. 30:205–208, 2004.
Seo, B. M., M. Miura, S. Gronthos, P. M. Bartold, J. Brahim, M. Young, P. G. Robey, C. Y. Wang, and S. Shi. Investigation of multipotent postnatal stem cell from human periodontal ligament. Lancet 364:149–155, 2004.
Shi, S., P. M. Bartold, M. Miura, B. M. Seo, P. G. Robry, and S. Gronthos. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod. Craniofac. Res. 8:191–199, 2005.
Woods, E. J., B. C. Perry, J. J. Hockema, L. Larson, D. Zhou, and W. S. Goebel. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 59:150–157, 2009.
Yamada, Y., M. Ueda, T. Naiki, M. Takahashi, K. Hata, and T. Nagasaka. Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration. Tissue Eng. 10:955–964, 2004.
Yang, X., P. M. van der Kraan, Z. Bian, M. Fan, X. F. Walboomers, and J. A. Jansen. Mineralized tissue formation by BMP2-transfected pulp stem cells. J. Dent. Res. 88:1020–1025, 2009.
Young, C. S., H. Abukawa, R. Asrican, M. Ravens, M. J. Troulis, L. B. Kaban, J. P. Vacanti, and P. C. Yelick. Tissue-engineered hybrid tooth and bone. Tissue Eng. 11:1599–1610, 2005.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Mona Kamal Marei oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Ikeda, H., Sumita, Y., Ikeda, M. et al. Engineering Bone Formation from Human Dental Pulp- and Periodontal Ligament-Derived Cells. Ann Biomed Eng 39, 26–34 (2011). https://doi.org/10.1007/s10439-010-0115-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-010-0115-2


