Skip to main content
Log in

Biomechanical and Microstructural Properties of Common Carotid Arteries from Fibulin-5 Null Mice

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Alteration in the mechanical properties of arteries occurs with aging and disease, and arterial stiffening is a key risk factor for subsequent cardiovascular events. Arterial stiffening is associated with the loss of functional elastic fibers and increased collagen content in the wall of large arteries. Arterial mechanical properties are controlled largely by the turnover and reorganization of key structural proteins and cells, a process termed growth and remodeling. Fibulin-5 (fbln5) is a microfibrillar protein that binds tropoelastin, interacts with integrins, and localizes to elastin fibers; tropoelastin and microfibrillar proteins constitute functional elastic fibers. We performed biaxial mechanical testing and confocal imaging of common carotid arteries (CCAs) from fibulin-5 null mice (fbln5 /) and littermate controls (fbln5 +/+) to characterize the mechanical behavior and microstructural content of these arteries; mechanical testing data were fit to a four-fiber family constitutive model. We found that CCAs from fbln5 / mice exhibited lower in vivo axial stretch and lower in vivo stresses while maintaining a similar compliance over physiological pressures compared to littermate controls. Specifically, for fbln5 / the axial stretch λ = 1.41 ± 0.07, the circumferential stress σ θ  = 101 ± 32 kPa, and the axial stress σ z  = 74 ± 28 kPa; for fbln5 +/+ λ = 1.64 ± 0.03, σ θ  = 194 ± 38 kPa, and σ z  = 159 ± 29 kPa. Structurally, CCAs from fbln5 / mice lack distinct functional elastic fibers defined by the lamellar structure of alternating layers of smooth muscle cells and elastin sheets. These data suggest that structural differences in fbln5 / arteries correlate with significant differences in mechanical properties. Despite these significant differences fbln5 / CCAs exhibited nearly normal levels of cyclic strain over the cardiac cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Arnet, D. K., G. W. Evans, and W. A. Riley. Arterial stiffness: a new cardiovascular risk factor? Am. J. Epidemiol. 140:669–682, 1994.

    Google Scholar 

  2. Baek, S., R. Gleason, K. Rajagopal, and J. Humphrey. Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196(31–32):3070–3078, 2007.

    Article  Google Scholar 

  3. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3):519–560, 1995.

    CAS  PubMed  Google Scholar 

  5. Dobrin, P. B. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 19(5):351–358, 1986.

    Article  CAS  PubMed  Google Scholar 

  6. Dye, W. W., R. L. Gleason, E. Wilson, and J. D. Humphrey. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J. Appl. Physiol. 103(2):664–672, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Dzau, V. J., and G. H. Gibbons. Vascular remodeling: mechanisms and implications. J. Cardiovasc. Pharmacol. 21(Suppl 1):S1–S5, 1993.

    Article  CAS  PubMed  Google Scholar 

  8. Eberth, J. F., A. I. Taucer, E. Wilson, and J. D. Humphrey. Mechanics of carotid arteries in a mouse model of Marfan Syndrome. Ann. Biomed. Eng. 37(6):1093–1104, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Fillinger, M. F., J. Racusin, R. K. Baker, J. L. Cronenwett, A. Teutelink, M. L. Schermerhorn, R. M. Zwolak, R. J. Powell, D. B. Walsh, and E. M. Rzucidlo. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J. Vasc. Surg. 39(6):1243–1252, 2004.

    Article  PubMed  Google Scholar 

  10. Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. Springer, 1993.

  11. Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126(6):787–795, 2004.

    Article  CAS  PubMed  Google Scholar 

  12. Hansen, L., W. Wan, and R. L. Gleason. Microstructurally-motivated constitutive modeling of mouse arteries cultured under altered axial stretch. J. Biomech. Eng. 131(10):11, 2009.

    Article  Google Scholar 

  13. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  14. Holzapfel, G., T. Gasser, and R. Ogden. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J. Biomech. Eng. 126(2):264, 2004.

    Article  PubMed  Google Scholar 

  15. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, Organs. New York: Springer-Verlag, 2002.

    Google Scholar 

  16. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3):407–430, 2002.

    Article  Google Scholar 

  17. Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8):918–925, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239(1):H14–H21, 1980.

    CAS  PubMed  Google Scholar 

  20. Kobayashi, N., G. Kostka, J. H. Garbe, D. R. Keene, H. P. Bachinger, F. G. Hanisch, D. Markova, T. Tsuda, R. Timpl, M. L. Chu, and T. Sasaki. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J. Biol. Chem. 282(16):11805–11816, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Kowal, R. C., J. A. Richardson, J. M. Miano, and E. N. Olson. EVEC, a novel epidermal growth factor-like repeat-containing protein upregulated in embryonic and diseased adult vasculature. Circ. Res. 84:1166–1176, 1999.

    CAS  PubMed  Google Scholar 

  22. Martinez-Lemus, L. A., M. A. Hill, S. S. Bolz, U. Pohl, and G. A. Meininger. Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB J. 18(6):708–710, 2004.

    CAS  PubMed  Google Scholar 

  23. Matsumoto, T., and K. Hayashi. Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain. J. Biomech. Eng. 118(1):62–73, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura, T., P. R. Lozano, Y. Ikeda, Y. Iwanaga, A. Hinek, S. Minamisawa, C. F. Cheng, K. Kobuke, N. Dalton, Y. Takada, K. Tashiro, J. Ross, Jr, T. Honjo, and K. R. Chien. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415(6868):171–175, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35(8):681–690, 1957.

    CAS  PubMed  Google Scholar 

  26. Spencer, A. J. M. Constitutive theory for strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fibre-Reinforced Composites, CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences, edited by A. J. M. Spencer. Springer-Verlag, Wien, 1984, pp. 1–32.

  27. Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20(1):7, 1987.

    Article  CAS  PubMed  Google Scholar 

  28. Van Loon, P. Length–force and volume–pressure relationships of arteries. Biorheology 14(4):181–201, 1977.

    PubMed  Google Scholar 

  29. Wagenseil, J. E., C. H. Ciliberto, R. H. Knutsen, M. A. Levy, A. Kovacs, and R. P. Mecham. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ. Res. 104(10):1217–1224, 2009.

    Article  CAS  PubMed  Google Scholar 

  30. Wagenseil, J. E., N. L. Nerurkar, R. H. Knutsen, R. J. Okamoto, D. Y. Li, and R. P. Mecham. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 289(3):H1209–H1217, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Wong, L. C., and B. L. Langille. Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow. Circ. Res. 78(5):799–805, 1996.

    CAS  PubMed  Google Scholar 

  32. Yanagisawa, H., E. C. Davis, B. C. Starcher, T. Ouchi, M. Yanagisawa, J. A. Richardson, and E. N. Olson. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415(6868):168–171, 2002.

    Article  PubMed  Google Scholar 

  33. Zoumi, A., A. Yeh, and B. J. Tromberg. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99(17):11014–11019, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge that this research was funded by grants from the NIH (R21-HL085822 and T32-GM008433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolph L. Gleason Jr..

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, W., Yanagisawa, H. & Gleason, R.L. Biomechanical and Microstructural Properties of Common Carotid Arteries from Fibulin-5 Null Mice. Ann Biomed Eng 38, 3605–3617 (2010). https://doi.org/10.1007/s10439-010-0114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0114-3

Keywords

Navigation