Skip to main content
Log in

On Non-Invasive Measurement of Gastric Motility from Finger Photoplethysmographic Signal

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This article investigates the possibility of extracting gastric motility (GM) information from finger photoplethysmographic (PPG) signals non-invasively. Now-a-days measuring GM is a challenging task because of invasive and complicated clinical procedures involved. It is well-known that the PPG signal acquired from finger consists of information related to heart rate and respiratory rate. This thread is taken further and effort has been put here to find whether it is possible to extract GM information from finger PPG in an easier way and without discomfort to the patients. Finger PPG and GM (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the rate of 100 Hz from eight healthy subjects for 30 min duration in fasting and postprandial states. In this study, we process the finger PPG signal and extract a slow wave that is analogous to actual EGG signal. To this end, we chose two advanced signal processing approaches: first, we perform discrete wavelet transform (DWT) to separate the different components, since PPG and EGG signals are non-stationary in nature. Second, in the frequency domain, we perform cross-spectral and coherence analysis using autoregressive (AR) spectral estimation method in order to compare the spectral details of recorded PPG and EGG signals. In DWT, a lower frequency oscillation (≈0.05 Hz) called slow wave was extracted from PPG signal which looks similar to the slow wave of GM in both shape and frequency in the range (0–0.1953) Hz. Comparison of these two slow wave signals was done by normalized cross-correlation technique. Cross-correlation values are found to be high (range 0.68–0.82, SD 0.12, R = 1.0 indicates exact agreement, p < 0.05) for all subjects and there is no significant difference in cross-correlation between fasting and postprandial states. The coherence analysis results demonstrate that a moderate coherence (range 0.5–0.7, SD 0.13, p < 0.05) exists between EGG and PPG signal in the “slow wave” frequency band, without any significant change in the level of coherence in postprandial state. These results indicate that finger PPG signal contains GM-related information. The findings are sufficiently encouraging to motivate further exploration of finger PPG as a non-invasive source of GM-related information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control AC-19:716–723, 1974.

    Article  Google Scholar 

  2. Akay, M. Wavelet applications in medicine. IEEE Spectr. 34(5):50–56, 1997.

    Article  Google Scholar 

  3. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3):R1–R39, 2007.

    Article  PubMed  Google Scholar 

  4. Allen, J., and A. Murray. Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol. Meas. 21:369–377, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Alos, R., E. Garcia-Granero, J. Calvete, and N. Uribe. The use of photoplethysmography to predict anastomotic viability after segmental intestinal ischemia in dogs. Eur. J. Surg. 159:35–41, 1993.

    CAS  PubMed  Google Scholar 

  6. Alvarez, W. C. The electrogastrogram and what it shows. J. Am. Med. Assoc. 78:116–119, 1922.

    Google Scholar 

  7. Amara Grap. An introduction to wavelets. IEEE Comput. Sci. Eng. 2:2, 1995.

    Google Scholar 

  8. Bendat, J. S., and A. G. Piersol. Engineering Applications of Correlation and Spectral Analysis (2nd ed.). New York: Wiley, 1993.

    Google Scholar 

  9. Bendat, J., and A. Piersol. Random Data: Analysis and Measurement Procedures (3rd ed.). New York: Wiley, 2000.

    Google Scholar 

  10. Brij, N. S., and K. T. Arvind. Optimal selection of wavelet basis function applied to ECG signal denoising. Digit. Signal Process. 16:275–287, 2006.

    Article  Google Scholar 

  11. Brillinger, D. Time Series: Data Analysis and Theory. New York: Holt, Rinehart and Winston, 1975.

    Google Scholar 

  12. Cazares, S., M. Moulden, C. W. G. Redman, and L. Tarassenko. Tracking poles with an autoregressive model: a confidence index for the analysis of the intrapartum cardiotocogram. Med. Eng. Phys. 23:603–614, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Challoner, A. V. J. Photoelectric plethysmography for estimating cutaneous blood flow. In: Non-Invasive Physiological Measurements, Vol. 1, edited by P. Rolfe. London: Academic Press, 1979, pp. 125–151.

    Google Scholar 

  14. Chen, J., and R. W. McCallum. Response of the electric activity in the human stomach to water and a solid meal. Med. Biol. Eng. Comput. 29:351–357, 1991.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J. D., W. R. Stewart, and R. W. McCallum. Spectral analysis of episodic rhythmic variations in the cutaneous electrogastrogram. IEEE Trans. Biomed. Eng. 40(2):128–135, 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Daubechies, I. The wavelet transform time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5):961–1005, 1990.

    Article  Google Scholar 

  17. Dean, C., E. D. Übeyli, and I. Cosic. Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: a pilot study. Digit. Signal Process. 18:861–874, 2008.

    Article  Google Scholar 

  18. Dirgenali, F., S. Kara, and S. Okkesim. Estimation of wavelet and short-time Fourier transform sonograms of normal and diabetic subjects’ electrogastrogram. Comput. Biol. Med. 36:1289–1302, 2006.

    Article  PubMed  Google Scholar 

  19. Fleming, S. G., and L. Tarassenko. A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram. Int. J. Biol. Med. Sci. 2(4):232–236, 2007.

    Google Scholar 

  20. Fujimura, J., M. Camilleri, P. A. Low, V. Novak, P. Novak, and T. L. Opfer-Gehrking. Effect of perturbations and a meal on superior mesenteric artery flow in patients with orthostatic hypotension. J. Auton. Nerv. Syst. 67:15–23, 1997.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Granero, E., S. A. Garcia, R. Alos, J. Calvete, B. Flor-Lorente, J. Willatt, and S. Lledo. Use of PPG to determine gastrointestinal perfusion pressure: an experimental Canine model. Dig. Surg. 20:222–228, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Girault, J. M., D. Kouame, A. Ouahabi, and F. Patat. Microemboli detection: an ultrasound Doppler signal processing viewpoint. IEEE Trans. Biomed. Eng. 47:1431–1439, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Guyton, A. C., and E. H. John. Textbook of Medical Physiology (11th ed.). Philadelphia: Elsevier/Saunders, 2006.

    Google Scholar 

  24. Haghighi-Mood, A., and J. N. Tony. The-varying filtering of the first and second heart sounds. In: 18th Annual International Conference Proceedings of the IEEE EMBS Conference, Amsterdam, pp. 950–9516, 1996.

  25. Haghighi-Mood, A., and J. N. Tony. Coherence analysis of multichannel heart sound recording. In: IEEE Transactions on Computers in Cardiology, pp. 377–380, 1996.

  26. Halliday, D. M., J. R. Rosenberg, A. M. Amjad, P. Breeze, B. A. Conway, and S. F. Farmer. A framework for the analysis of mixed time series/point process data: theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog. Biophys. Mol. Biol. 64:237–278, 1995.

    Article  CAS  PubMed  Google Scholar 

  27. Hertzman, A. B., and C. R. Spielman. Observations on the finger volume pulse recorded photoelectrically. Am. J. Physiol. 119:334–335, 1937.

    Google Scholar 

  28. Hyndman, B. W., R. I. Kitney, and B. Sayers. Spontaneous rhythms in physiological control systems. Nature 233:339–341, 1971.

    Article  CAS  PubMed  Google Scholar 

  29. Johansson, A., and P. A. Oberg. Estimation of respiratory volumes from the photoplethysmographic signal. Part 1: experimental results. Med. Biol. Eng. Comput. 37:42–47, 1999.

    Article  CAS  PubMed  Google Scholar 

  30. Johansson, A., and P. A. Oberg. Estimation of respiratory volumes from the photoplethysmographic signal. Part 2: a model study. Med. Biol. Eng. Comput. 37:48–53, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Jönsson, B., C. Laurent, M. Vegfors, and L. G. Lindberg. A new probe for ankle systolic pressure measurement using photoplethysmography. Ann. Biomed. Eng. 33:232–239, 2005.

    Article  PubMed  Google Scholar 

  32. Kamal, A. A. R., J. B. Hatness, G. Irving, and A. J. Means. Skin photoplethysmography—a review. Comput. Methods Programs Biomed 28:257–269, 1989.

    Article  CAS  PubMed  Google Scholar 

  33. Kara, S., F. Dirgenali, and S. Okkesim. Detection of gastric dysrhythmia using WT and ANN in diabetic gastroparesis patients. Comput. Biol. Med. 36:276–290, 2006.

    Article  PubMed  Google Scholar 

  34. Kay, S. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall, 1988.

    Google Scholar 

  35. Kraitl, J., H. Ewald, and H. Gehring. Analysis of time series for non-invasive characterization of blood components and circulation patterns. Nonlinear Anal. Hybrid Syst. 2:441–455, 2008.

    Article  Google Scholar 

  36. Kvandal, P., S. A. Landsverk, A. Bernjak, U. Benko, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen. Low frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 72(3):120–127, 2006.

    Article  PubMed  Google Scholar 

  37. Kyriacou, P. A., A. Crerar-Gilber, R. M. Langford, and D. P. Jones. Electro-optical techniques for the investigation of photoplethysmographic signals in human abdominal organs. J. Phys. Conf. Ser. 45:232–238, 2006.

    Article  Google Scholar 

  38. Lee. J., and K. H. Chon. Respiratory rate extraction via an autoregressive model using the optimal parameter search criterion. Ann. Biomed. Eng. (in press). doi: 10.1007/s10439-010-0080-9.

  39. Liang, F., and H. Liu. A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int. J. C 48:4, 2005.

    Article  Google Scholar 

  40. Lin, Z., and J. D. Chen. Time–frequency representation of the electrogastrogram—application of the exponential distribution. IEEE Trans. Biomed. Eng. 41:267–275, 1994.

    Article  CAS  PubMed  Google Scholar 

  41. Lin, Y.-D., W.-T. Liu, C.-C. Tsai, and W.-H. Chen. Coherence analysis between respiration and PPG signal by bivariate AR model. Conf. Proc. World Acad. Sci. Eng. Technol. 53:847–852, 2009.

    Google Scholar 

  42. Linkens, D. A., and S. P. Datardina. Estimation of frequencies of gastrointestinal electrical rhythms using autoregressive modeling. Med. Biol. Eng. Comput. 16:262–268, 1978.

    Article  CAS  PubMed  Google Scholar 

  43. Marple, S. L. Digital Spectral Analysis with Applications. Englewood Cliffs: Prentice-Hall, 1987.

    Google Scholar 

  44. Mizuno-Matsumoto, Y., S. Tamura, Y. Sato, R. A. Zoroofi, T. Yoshimine, A. Kato, M. Taniguchi, M. Takeda, T. Inouye, H. Tatsumi, S. Shimojo, and H. Miyahara. Propagating process of epileptiform discharges using wavelet-cross-correlation analysis in MEG. In: Recent Advances in Biomagnetism, edited by T. Yoshimoto. Sendai: Tohoku University Press, 1999, pp. 782–785.

    Google Scholar 

  45. Nawap, S. H., and T. F. Quatieri. Short time Fourier transform. In: Advanced Topics in Signal Processing, edited by J. S. Lim, and A. V. Oppenheim. Englewood Cliffs, NJ: Prentice-Hall, 1988, pp. 239–337.

    Google Scholar 

  46. Nilsson, L., A. Johansson, and S. Kalman. Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J. Clin. Monit. 16:309–315, 2000.

    Article  CAS  Google Scholar 

  47. Nitzan, M., S. Turivnenko, A. Milston, A. Babchenko, and Y. Mahler. Low-frequency variability in the blood volume pulse measured by photoplethysmography. J. Biomed. Opt. 1:223–229, 1996.

    Article  Google Scholar 

  48. Nitzan, M., A. Babchenko, B. Khanokh, and D. Landau. The variability of the photoplethysmographic signal: a potential method for the evaluation of the autonomic nervous system. Physiol. Meas. 19:93–102, 1998.

    Article  CAS  PubMed  Google Scholar 

  49. Parkman, H. P. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical Testing Task force. Neurogastroenterol. Motil. 15:89–102, 2003.

    Article  CAS  PubMed  Google Scholar 

  50. Proakis, J. G., and D. G. Manolakis. Digital Signal Processing: Principles Algorithms and Applications (3rd ed.). India: Prentice-Hall, 1997.

    Google Scholar 

  51. Roberts, V. C. Photoplethysmography—fundamental aspects of the optical properties of blood in motion. Trans. Instrum. Meas. Control 4:101–106, 1982.

    Article  Google Scholar 

  52. Rossi, P., G. I. Andriesse, P. L. Oey, G. H. Wieneke, J. M. M. Roelofs, and L. M. A. Akkermans. Stomach distension increases efferent muscle sympathetic nerve activity and blood pressure in healthy humans. J. Neurol. Sci. 161:148–155, 1998.

    Article  CAS  PubMed  Google Scholar 

  53. Scalassara, P. R., C. D. Maciel, R. C. Guido, J. C. Pereira, E. S. Fonseca, A. N. Montagnoli, S. Barbon, Jr., L. S. Vieira, and F. L. Sanchez. Autoregressive decomposition and pole tracking applied to vocal fold nodule signals. Pattern Recognit. Lett. 28:1360–1367, 2007.

    Article  Google Scholar 

  54. Semmlow, J. L. Biosignal and Medical Image Processing (2nd ed.). Boca Rotan: CRC Press, 2009.

    Google Scholar 

  55. Smout, A. J., E. J. Van der Schee, and J. L. Grashuis. What is measured in electrogastrography? Dig. Dis. Sci. 25:179–187, 1980.

    Article  CAS  PubMed  Google Scholar 

  56. Stefanovska, A., M. Bračič, and H. D. Kvernmo. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 46(10):1230–1239, 1999.

    Article  CAS  PubMed  Google Scholar 

  57. Texter, E. C. Small intestinal blood flow. Dig. Dis. Sci. 8(7):587–613, 1963.

    Article  Google Scholar 

  58. Thomas, K. A., M. Moosikasuwan, D. S. Samir, and S. D. Kedar. Length-normalized pulse photoplethysmography: a noninvasive method to measure blood hemoglobin. Ann. Biomed. Eng. 30:1291–1298, 2002.

    Article  Google Scholar 

  59. Übeyli, E. D., D. Cvetkovic, and I. Cosic. AR spectral analysis technique for human PPG, ECG and EEG signals. J. Med. Syst. 32(3):201–206, 2008.

    Article  PubMed  Google Scholar 

  60. Unser, M., and A. Aldroubi. A review of wavelets in biomedical applications. Proc. IEEE 84(4):626–638, 1996.

    Article  Google Scholar 

  61. Wukitsch, M. W., M. T. Petterson, D. R. Tobler, and J. A. Pologe. Pulse oximetry: analysis of theory, technology and practice. J. Clin. Monit. 4:290–301, 1988.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Applied Mechanics Department of Indian Institute of Technology Madras and Government of India for funding this work. We sincerely acknowledge all the volunteers who have participated in this study by sparing their valuable time and effort to make it successful. Authors would like to thank the unknown and anonymous reviewers for their invaluable comments to improve the standard of article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manivannan.

Additional information

Associate Editor Leonidas D. Iasemidis oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed Yacin, S., Manivannan, M. & Srinivasa Chakravarthy, V. On Non-Invasive Measurement of Gastric Motility from Finger Photoplethysmographic Signal. Ann Biomed Eng 38, 3744–3755 (2010). https://doi.org/10.1007/s10439-010-0113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0113-4

Keywords

Navigation