Skip to main content

Advertisement

Log in

Development and Validation of a Finite Element Model of the Superior Glenoid Labrum

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pathology of the superior glenoid labrum is a common source of musculoskeletal pain and disability. One of the proposed mechanisms of injury to the labrum is superior humeral head migration, which can be seen with rotator cuff insufficiency. Due to the size, anatomical location, and complex composition of the labrum, laboratory experiments have many methodological difficulties. The purpose of this study was to develop and validate a finite element model of the glenoid labrum. The model developed includes the glenoid labrum, glenoid cartilage, glenoid bone, and the humeral head cartilage. Labral displacements derived from the finite element model were compared to those measured during a controlled validation experiment simulating superior humeral head translations of 1, 2, and 3 mm. The results of the finite element model compared well to experimental measurements, falling within one standard deviation of the experimental data in most cases. The model predicted maximum average strains in the superior labrum of 7.9, 10.1, and 11.9%, for 1, 2, and 3 mm of humeral translation, respectively. The correspondence between the finite element model and the validation experiment supports the use of this model to better understand the pathomechanics of the superior labrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abboud, J. A., and L. J. Soslowsky. Interplay of the static and dynamic restraints in glenohumeral instability. Clin. Orthop. Relat. Res. 400:48–57, 2002.

    Article  PubMed  Google Scholar 

  2. Adams, C. R., M. A. Baldwin, P. J. Laz, P. J. Rullkoetter, and J. E. Langenderfer. Effects of rotator cuff tears on muscle moment arms: a computational study. J. Biomech. 40(15):3373–3380, 2007.

    Article  PubMed  Google Scholar 

  3. Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. Trans. ASME 127(3):364–373, 2005.

    Article  Google Scholar 

  4. Andrews, J. R., W. G. Carson, and W. D. Mcleod. Glenoid labrum tears related to the long head of the biceps. Am. J. Sports Med. 13(5):337–341, 1985.

    Article  CAS  PubMed  Google Scholar 

  5. Bendjaballah, M. Z., A. Shirazi-Adl, and D. J. Zukor. Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2):69–79, 1995.

    Article  Google Scholar 

  6. Bey, M. J., S. K. Kline, R. Zauel, T. R. Lock, and P. A. Kolowich. Measuring dynamic in vivo glenohumeral joint kinematics: technique and preliminary results. J. Biomech. 41(3):711–714, 2008.

    Article  PubMed  Google Scholar 

  7. Bishop, J. L., S. K. Kline, K. J. Aalderink, R. Zauel, and M. J. Bey. Glenoid inclination: in vivo measures in rotator cuff tear patients and associations with superior glenohumeral joint translation. J. Shoulder Elbow Surg. 18(2):231–236, 2009.

    Article  PubMed  Google Scholar 

  8. Blankevoort, L., J. H. Kuiper, R. Huiskes, and H. J. Grootenboer. Articular cartilage in a three-dimensional model of the knee. J. Biomech. 24(11):1019–1031, 1991.

    Article  CAS  PubMed  Google Scholar 

  9. Carey, J., C. F. Small, and D. R. Pichora. In situ compressive properties of the glenoid labrum. J. Biomed. Mater. Res. 51:711–716, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Clavert, P., M. Zerah, J. Krier, P. Mille, J. F. Kempf, and J. L. Kahn. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone. Surg. Radiol. Anat. 28(6):581–587, 2006.

    Article  PubMed  Google Scholar 

  11. Cohen, B., T. R. Gardner, and G. A. Ateshian. The influence of transverse isotropy on cartilage indentation behavior: a study of the human humeral head. Trans. Orthop. Res. Soc. 18:185, 1993.

    Google Scholar 

  12. Cooper, D. E., S. P. Arnoczky, S. J. O’Brien, R. F. Warren, E. DiCarlo, and A. A. Allen. Anatomy, histology, and vascularity of the glenoid labrum. An anatomical study. J. Bone Joint Surg. Am. 74(1):46–52, 1992.

    CAS  PubMed  Google Scholar 

  13. D’Alessandro, D. F., J. E. Fleischli, and P. M. Connor. Superior labral lesions: diagnosis and management. J. Athl. Train. 35(3):286–292, 2000.

    PubMed  Google Scholar 

  14. Davidson, P. A., and D. W. Rivenburgh. Mobile superior glenoid labrum. Am. J. Sports Med. 32(4):962–966, 2004.

    Article  PubMed  Google Scholar 

  15. DePalma, A. F., G. Callery, and G. A. Bennet. Variational anatomy and degenerative lesions of the shoulder joint. In: American Academy of Orthopedic Surgeons: Instructional Course Lectures, edited by W. Blount. Mosby, 1949, pp. 255–281.

  16. Drury, N. J. Evaluating the anterior stability provided by the glenohumeral capsule: a finite element approach. Master of Science Thesis, University of Pittsburgh, 2006.

  17. Drury, N. J., B. J. Ellis, J. A. Weiss, P. J. McMahon, and R. E. Debski. The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule pathology. In: 54th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, 2008.

  18. Ellis, B. J., R. E. Debski, S. M. Moore, P. J. McMahon, and J. A. Weiss. Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J. Biomech. 40(3):603–612, 2007.

    Article  PubMed  Google Scholar 

  19. Habermeyer, P., U. Schuller, and E. Wiedemann. The intra-articular pressure of the shoulder: an experimental study on the role of the glenoid labrum in stabilizing the joint. Arthroscopy 8:166–172, 1992.

    Article  CAS  PubMed  Google Scholar 

  20. Hill, A. M., E. J. Hoerning, K. Brook, C. D. Smith, J. Moss, T. Ryder, A. L. Wallace, and A. M. J. Bull. Collagenous microstructure of the glenoid labrum and biceps anchor. J. Anat. 212:853–862, 2008.

    Article  CAS  PubMed  Google Scholar 

  21. Howell, S. M., and B. J. Galinat. The glenoid-labrum socket: a constrained articular surface. Clin. Orthop. Relat. Res. 243:122–125, 1989.

    PubMed  Google Scholar 

  22. Lazarus, M. D., J. A. Sidles, D. T. Harryman, and F. Matsen, III. Effect of a chondral-labral defect on glenoid concavity and glenohumeral stability. J. Bone Joint Surg. Am. 78(1):94–102, 1996.

    CAS  PubMed  Google Scholar 

  23. Lippitt, S., and F. Matsen. Mechanisms of glenohumeral joint stability. Clin. Orthop. Relat. Res. 291:20–28, 1993.

    PubMed  Google Scholar 

  24. Lippitt, S., J. E. Vanderhooft, S. L. Harris, J. A. Sidles, D. T. Harryman, and F. A. Matsen, III. Glenohumeral stability from concavity-compression: a quantitative analysis. J. Shoulder Elbow Surg. 2(1):27–35, 1993.

    Article  Google Scholar 

  25. Mura, N., S. W. O’Driscoll, M. E. Zobitz, T. R. Jenkyn, S. M. Chou, A. M. Halder, and K. N. An. The effect of infraspinatus disruption on glenohumeral torque and superior migration of the humeral head: a biomechanical study. J. Biomech. 12(2):179–184, 2003.

    Google Scholar 

  26. Nishida, K., H. Hashizume, K. Toda, and H. Inoue. Histologic and scanning electron microscopic study of the glenoid labrum. J. Shoulder Elbow Surg. 5(2):132–138, 1996.

    Article  CAS  PubMed  Google Scholar 

  27. Nishinaka, N., H. Tsutsui, K. Mihara, K. Suzuki, D. Makiuchi, Y. Kon, T. W. Wright, M. W. Moser, K. Gamada, H. Sugimoto, and S. A. Banks. Determination of in vivo glenohumeral translation using fluoroscopy and shape-matching techniques. J. Shoulder Elbow Surg. 17(2):319–322, 2008.

    Article  PubMed  Google Scholar 

  28. Peña, E., B. Calvo, M. A. Martínez, and M. Doblaré. A three-dimensional finite element analysis of the combined behavior of ligaments and meniscus in the healthy human knee joint. J. Biomech. 39(9):1686–1701, 2006.

    Article  PubMed  Google Scholar 

  29. Peña, E., B. Calvo, M. A. Martínez, and M. Doblaré. Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Comput. Biol. Med. 37(3):376–387, 2007.

    Article  PubMed  Google Scholar 

  30. Pradhan, R. L., E. Itoi, Y. Hatakeyama, M. Urayama, and K. Sato. Superior labral strain during the throwing motion: a cadaveric study. Am. J. Sports Med. 29(4):488–492, 2001.

    CAS  PubMed  Google Scholar 

  31. Prodromos, C. C., J. A. Ferry, A. L. Schiller, and B. Zarins. Histologic studies of the glenoid labrum from fetal life to old age. J. Bone Joint Surg. Am. 72(9):1344–1348, 1990.

    CAS  PubMed  Google Scholar 

  32. Ramos, A., and J. A. Simões. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med. Eng. Phys. 28(9):916–924, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Rao, A. G., T. K. Kim, E. Chronopoulos, and E. G. McFarland. Anatomical variants in the anterosuperior aspect of the glenoid labrum: a statistical analysis of seventy-three cases. J. Bone Joint Surg. Am. 85(4):653–659, 2003.

    PubMed  Google Scholar 

  34. Rizio, L., J. Garcia, R. Renard, and C. Got. Anterior instability increases superior labral strain in the late cocking phase of throwing. Orthopedics 30(7):544–550, 2007.

    PubMed  Google Scholar 

  35. Runkle, A. C., C. J. Gatti, W. Muhammad, R. A. Ruberte Thiele, M. L. Palmer, R. E. Hughes, and J. E. Carpenter. Superior glenoid labrum displacement with humeral head translation. 2010 (submitted).

  36. Smith, C. D., S. D. Masouros, A. M. Hill, A. L. Wallace, A. A. Amis, and A. M. J. Bull. Tensile properties of the human glenoid labrum. J. Anat. 212:49–54, 2008.

    CAS  PubMed  Google Scholar 

  37. Snyder, S. J., M. P. Banas, and R. P. Karzel. An analysis of 140 injuries to the superior glenoid labrum. J. Shoulder Elbow Surg. 4:243–248, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Su, W. R., J. E. Budoff, and Z. P. Luo. The effect of anterosuperior rotator cuff tears on glenohumeral translation. Arthroscopy 25(3):282–289, 2009.

    Article  PubMed  Google Scholar 

  39. Tamai, K., S. Okinaga, M. Ohtsuka, and A. Inokuchi. Fibrous architecture of the glenoid labrum. In: The Shoulder (Proceedings of the Third International Conference on Surgery of the Shoulder), edited by N. Takagishi. Fukuoda: Professional Postgraduate Services, 1986, pp. 27–29.

  40. Terrier, A., A. Vogel, M. Capezzali, and A. Farron. An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction. Med. Eng. Phys. 22(6):645–651, 2007.

    Google Scholar 

  41. Tuoheti, Y., E. Itoi, H. Minagawa, N. Yamamoto, H. Saito, N. Seki, K. Okada, Y. Shimada, and H. Abe. Attachment types of the long head of the biceps tendon to the glenoid labrum and their relationship with the glenohumeral ligaments. Arthroscopy 21(10):1242–1249, 2005.

    Article  PubMed  Google Scholar 

  42. Vadher, S. P., H. Nayeb-Hashemi, P. K. Canavan, and G. M. Warner. Finite element modeling following partial menisectomy: effect of various size of resection. In: Conference Proceedings of the 28th IEEE Engineering in Medicine and Biology Society. 1:2098–2101, 2006.

  43. Vangsness, C. T., S. S. Jorgenson, T. Watson, and D. L. Johnson. The origin of the long head of the biceps from the scapula and glenoid labrum. J. Bone Joint Surg. Br. 76(6):951–954, 1994.

    PubMed  Google Scholar 

  44. Weiss, J. A., J. C. Gardiner, B. J. Ellis, T. J. Lujan, and N. S. Phatak. Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10):845–861, 2005.

    Article  PubMed  Google Scholar 

  45. Yannas, I. V., and A. V. Tobolsky. Cross-linking of gelatin by dehydration. Nature 215:509–510, 1967.

    Article  CAS  PubMed  Google Scholar 

  46. Yao, J., P. D. Funkenbusch, J. Snibbe, M. Maloney, and A. L. Lerner. Sensitivities of medical meniscus motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J. Biomech. Eng. Trans. ASME 128(3):399–408, 2006.

    Article  Google Scholar 

  47. Yao, J., J. Snibbe, M. Maloney, and A. L. Lerner. Medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image-based experimental validation. J. Biomech. Eng. Trans. ASME 128(1):135–141, 2006.

    Article  Google Scholar 

  48. Yeh, M. L., D. Lintner, and Z. P. Luo. Stress distribution in the superior labrum during throwing motion. Am. J. Sports Med. 33(3):395–401, 2005.

    Article  PubMed  Google Scholar 

  49. Youm, T., N. S. ElAttrache, J. E. Tibone, M. H. McGarry, and T. Q. Lee. The effects of the long head of the biceps on glenohumeral kinematics. J. Shoulder Elbow Surg. 18(1):122–129, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by an internal grant from the Department of Orthopaedic Surgery and the Valassis Endowed Research Fund. The authors would like to thank and acknowledge the contributions of Dr. Steve Goldstein, Edward Sihler, Bryan Ladd, Jeff Meganck, Jia Li, Charles Roehm, Dennis Kayner, Dave Marvicsin, Ramon A. Ruberte Thiele, Adam Runkle, Wajeehullah Muhammad, Dr. Robert Kohen, Erin Robinson Bigelow, and Dr. Michael Bey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Hughes.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatti, C.J., Maratt, J.D., Palmer, M.L. et al. Development and Validation of a Finite Element Model of the Superior Glenoid Labrum. Ann Biomed Eng 38, 3766–3776 (2010). https://doi.org/10.1007/s10439-010-0105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0105-4

Keywords

Navigation