Berry, J. L., A. Santamarina, J. E. Moore, S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28(4):386–398, 2000.
CAS
Article
PubMed
Google Scholar
Brooks, G. A., T. D. Fahey, T. P. White, and K. M. Baldwin. Exercise Physiology Human Bioenergetics and Its Applications. Berkshire, UK: McGraw-Hill Companies, 2004.
Google Scholar
Burattini, R., P. Sipkema, G. van Huis, and N. Westerhof. Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model. Ann. Biomed. Eng. 13(5):385–404, 1985.
CAS
Article
PubMed
Google Scholar
Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26(10):2550–2559, 2005.
PubMed
Google Scholar
Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006.
Article
Google Scholar
Gijsen, F. J. H., J. J. Wentzel, A. Thury, F. Mastik, J. A. Schaar, J. C. H. Schuurbiers, C. J. Slager, W. J. van der Giessen, P. J. de Feyter, A. F. W. van der Steen, and P. W. Serruys. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295(4):H1608–1614, 2008.
CAS
Article
PubMed
Google Scholar
Gould, K. L., K. Lipscomb, and G. W. Hamilton. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 33(1):87–94, 1974.
CAS
Article
PubMed
Google Scholar
Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5(1):147–177, 2003.
CAS
Article
PubMed
Google Scholar
Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35(1):1–18, 2007.
Article
PubMed
Google Scholar
Kim, H. J., C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198(45–46):3551–3566, 2009.
Article
Google Scholar
Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, J. F. LaDisa, K. E. Jansen, J. A. Feinstein, and C. A. Taylor. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.
CAS
Article
PubMed
Google Scholar
Lagana, K., R. Balossino, F. Migliavacca, G. Pennati, E. L. Bove, M. R. de Leval, and G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38(5):1129–41, 2005.
Article
PubMed
Google Scholar
Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69(1):112–119, 1990.
CAS
PubMed
Google Scholar
Li, Z., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27(5):369–382, 2005.
Article
PubMed
Google Scholar
Mantero, S., R. Pietrabissa, and R. Fumero. The coronary bed and its role in the cardiovascular system: a review and an introductory single-branch model. J. Biomed. Eng. 14:109–115, 1992.
CAS
Article
PubMed
Google Scholar
Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39(6):1010–1020, 2006.
Article
PubMed
Google Scholar
Opie, L. H. Heart Physiology: From Cell to Circulation. Philadelphia, PA, USA: Lippincott Williams and Wilkins, 2003.
Google Scholar
Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. 122(1):77–85, 2000.
CAS
Article
PubMed
Google Scholar
Ramaswamy, S. D., S. C. Vigmostad, A. Wahle, Y. G. Lai, M. E. Olszewski, K. C. Braddy, T. M. H. Brennan, J. D. Rossen, M. Sonka, and K. B. Chandran. Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion. Ann. Biomed. Eng. 32(12):1628–1641, 2004.
CAS
Article
PubMed
Google Scholar
Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, 2006.
Article
Google Scholar
Santamarina, A., E. Weydahl, Jr. J. M. Siegel, and J. E. Moore, Jr. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26:944–954, 1998.
CAS
Article
PubMed
Google Scholar
Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2):H424–H428, 1999.
CAS
Google Scholar
Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5):231–247, 1999.
CAS
Article
PubMed
Google Scholar
Taylor, C. A., and C. A. Figueroa. Patient-specific model of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11:109–134, 2009.
CAS
Article
PubMed
Google Scholar
Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1998.
Article
Google Scholar
Van Huis, G. A., P. Sipkema, and N. Westerhof. Coronary input impedance during cardiac cycle as determined by impulse response method. Am. J. Physiol. Heart Circ. Physiol. 253(2):H317–H324, 1987.
CAS
Google Scholar
Vignon-Clementel, I.E., C.A. Figueroa, K.E. Jansen, and C.A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.
Article
Google Scholar
Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng., 2008. doi:10.1080/10255840903413565.
Zamir, M., P. Sinclair, and T.H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.
CAS
Article
PubMed
Google Scholar
Zeng, D., E. Boutsianis, M. Ammann, K. Boomsma, S. Wildermuth, and D. Poulikakos. A study on the compliance of a right coronary artery and its impact on wall shear stress. J. Biomech. Eng. 130(4):041014, 2008.
Article
PubMed
Google Scholar
Zhou, Y., G. S. Kassab, and S. Molloi. On the design of the coronary arterial tree: a generalization of Murray’s law. Phys. Med. Biol. 44:2929–2945, 1999.
CAS
Article
PubMed
Google Scholar