Advertisement

Annals of Biomedical Engineering

, Volume 38, Issue 8, pp 2716–2732 | Cite as

Feature Extraction From Parametric Time–Frequency Representations for Heart Murmur Detection

  • L. D. Avendaño-ValenciaEmail author
  • J. I. Godino-Llorente
  • M. Blanco-Velasco
  • G. Castellanos-Dominguez
Article

Abstract

The detection of murmurs from phonocardiographic recordings is an interesting problem that has been addressed before using a wide variety of techniques. In this context, this article explores the capabilities of an enhanced time–frequency representation (TFR) based on a time-varying autoregressive model. The parametric technique is used to compute the TFR of the signal, which serves as a complete characterization of the process. Parametric TFRs contain a large quantity of data, including redundant and irrelevant information. In order to extract the most relevant features from TFRs, two specific approaches for dimensionality reduction are presented: feature extraction by linear decomposition, and tiling partition of the tf plane. In the first approach, the feature extraction was carried out by means of eigenplane-based PCA and PLS techniques. Likewise, a regular partition and a refined Quadtree partition of the tf plane were tested for the tiled-TFR approach. As a result, the feature extraction methodology presented, which searches for the most relevant information immersed on the TFR, has demonstrated to be very effective. The features extracted were used to feed a simple k-nn classifier. The experiments were carried out using 45 phonocardiographic recordings (26 normal and 19 records with murmurs), segmented to extract 548 representative individual beats. The results using these methods point out that better accuracy and flexibility can be accomplished to represent non-stationary PCG signals, showing evidences of improvement with respect to other approaches found in the literature. The best accuracy obtained was 99.06 ± 0.06%, evidencing high performance and stability. Because of its effectiveness and simplicity of implementation, the proposed methodology can be used as a simple diagnostic tool for primary health-care purposes.

Keywords

Heart sounds Feature extraction Time–frequency representation Time-varying autoregressive model Murmur detection 

Abbreviations

2D-PCA

Two-dimensional PCA

AR

Autoregressive

BIC

Bayesian information criterion

CWT

Continuous wavelet transform

ECG

Electrocardiogram

HS

Heart sound

k-nn

k-nearest neighbors

LS-TVAR

Least-squares TVAR

PCA

Principal component analysis

PCG

Phonocardiogram

PLS

Partial least squares

SNR

Signal-to-noise ratio

tf

Time–frequency

TFR

Time–frequency representation

TVAR

Time-varying autoregressive

WVD

Wigner–Ville distribution

Notes

Acknowledgments

The authors would like to acknowledge Dr. Ana Maria Matijasevic and Dr. Guillermo Agudelo who are working with Universidad de Caldas for organizing the acquisition of the PCG data. This research was carried out under grants: “Centro de Investigación e Innovación de Excelencia ARTICA,” funded by COLCIENCIAS; and TEC2006-12887-C02 from the Ministry of Science and Technology of Spain.

References

  1. 1.
    Abramovich, Y., N. Spencer, and M. Turley. Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models. IEEE Trans. Signal Process. 55(6):2861–2876, 2007.CrossRefGoogle Scholar
  2. 2.
    Ahlstrom, C., P. Hult, P. Rask, J. Karlsson, E. Nylander, U. Dahlstrom, and P. Ask. Feature extraction for systolic heart murmur classification. Ann. Biomed. Eng. 34:1666–1677, 2006.CrossRefPubMedGoogle Scholar
  3. 3.
    Avendano-Valencia, D., F. Martinez-Tabares, D. Acosta-Medina, I. Godino-Llorente, and G. Castellanos-Dominguez. TFR-based feature extraction using PCA Approaches for discrimination of heart murmurs. Proceedings of the 31th IEEE EMBS Annual International Conference (EMBC’09), 2009.Google Scholar
  4. 4.
    Barker, M., and W. Rayens. Partial least squares for discrimination. J. Chemomet. 17(3):166–173, 2003.CrossRefGoogle Scholar
  5. 5.
    Bernat, E., W. Williams, and W. Gehring. Decomposing ERP time–frequency energy using PCA. Clin. Neurophysiol. 116:1314–1334, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Cassidy, M., and W. Penny. Bayesian nonstationary autoregressive models for biomedical signal analysis. IEEE Trans. Biomed. Eng. 49(10):1142–1152, 2002.CrossRefPubMedGoogle Scholar
  7. 7.
    Cerutti, S., A. Bianchi, and L. Mainardi. Advanced spectral methods for detecting dynamic behaviour. Auton. Neurosci.: Basic Clin. 90(1):3–12, 2001.CrossRefGoogle Scholar
  8. 8.
    Delgado-Trejos, E., A. Quiceno-Manrique, J. Godino-Llorente, M. Blanco-Velasco, and G. Castellanos-Dominguez. Digital auscultation analysis for heart murmur detection. Ann. Biomed. Eng. 37(2):337–353, 2009.CrossRefPubMedGoogle Scholar
  9. 9.
    Deng, J., J. Yao, J. Dewald, and P. Julius. Classification of the intention to generate a shoulder versus elbow torque by means of a time frequency synthesized spatial patterns BCI algorithm. J. Neural Eng. 2(4):131–138, 2005.Google Scholar
  10. 10.
    El-Segaier, M., O. Lilja, O. Lukkarinen, L. Sörnmo, R. Sepponen, and E. Pesonen. Computer-based detection and analysis of heart sound and murmur. Ann. Biomed. Eng. 33(7):937–942, 2005.CrossRefPubMedGoogle Scholar
  11. 11.
    Englehart, K., B. Hudgins, P. Parker, and M. Stevenson. Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 21(6):431–438, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Güler, I., M. Kiymik, and F. Güler. Order determination in autoregressive modeling of diastolic heart sounds. J. Med. Syst. 20(1):11–17, 1995.CrossRefGoogle Scholar
  13. 13.
    Kaipio, J., and M. Juntunen. Deterministic regression smoothness priors TVAR modelling. Proc. IEEE ICASSP 99, 1999, 1693–1696.Google Scholar
  14. 14.
    Kanai, H., N. Chubachi, and Y. Koiwa. A time-varying AR modeling of heart wall vibration. In: Proceedings on International Conference of the Acoustics, Speech, and Signal Processing, ICASSP 95, edited by EEE Computer Society, 1995, pp. 941–944.Google Scholar
  15. 15.
    Marchant, B. Time-frequency analysis for biosystems engineering. Biosyst. Eng. 85(3):261–281, 2003.CrossRefGoogle Scholar
  16. 16.
    Nandagopal, D., J. Mazumbar, and R. Bogner. Spectral analysis of second heart sound in children by selective linear prediction coding. Med. Biol. Eng. Comput. 22:229–239, 1985.Google Scholar
  17. 17.
    Poulimenos, A., and S. Fassois. Parametric time-domain methods for non-stationary random vibration modelling and analysis—a critical survey and comparison. Mech. Syst. Signal Process. 20(4):763–816, 2006.CrossRefGoogle Scholar
  18. 18.
    Quiceno-Manrique, A. F., J. I. Godino-Llorente, M. Blanco-Velasco, and G. Castellanos-Domínguez. Selection of dynamic features based on time-frequency representations for heart murmur detection from phonocardiographic signals. Ann. Biomed. Eng. 38(1):118–137, 2009.CrossRefPubMedGoogle Scholar
  19. 19.
    Sejdic, E., I. Djurovic, and J. Jiang. Time–frequency feature representation using energy concentration: an overview of recent advances. Digital Signal Process. 19(1):153–183, 2009.CrossRefGoogle Scholar
  20. 20.
    Sullivan, G., and R. Baker. Efficient quadtree coding of images and video. IEEE Trans. Image. Process. 3(3):327–331, 1994.CrossRefPubMedGoogle Scholar
  21. 21.
    Tarvainen, M., J. Hiltunen, P. Ranta-aho, and P. Karjalainen. Estimation of nonstationary EEG with Kalman smoother approach: an application to event-related synchronization. IEEE Trans. Biomed. Eng. 51(3):516–524, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Tzallas, A., M. Tsipouras, and D. Fotiadis. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 2007:1–13, 2007.CrossRefGoogle Scholar
  23. 23.
    Wang, P., C. S. Lim, S. Chauhan, J. Yong, A. Foo, and V. Anantharaman. Phonocardiographic signal analysis method using a modified hidden Markov model. Ann. Biomed. Eng. 35(3):367–374, 2006.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang, J., D. Zhang, A. Frangi, and J. Yang. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1):131–137, 2004.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • L. D. Avendaño-Valencia
    • 1
    Email author
  • J. I. Godino-Llorente
    • 2
  • M. Blanco-Velasco
    • 3
    • 4
  • G. Castellanos-Dominguez
    • 1
  1. 1.Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónUniversidad Nacional de ColombiaCaldas, ManizalesColombia
  2. 2.Departamento de Ingeniería de Circuitos y SistemasUniversidad Politécnica de MadridMadridSpain
  3. 3.Universidad de AlcalaAlcala de Henares, MadridSpain
  4. 4.Departamento Teoría de la Señal y ComunicacionesAlcalá de Henares, MadridSpain

Personalised recommendations