Endothelial Gene Expression in Regions of Defined Shear Exposure in the Porcine Iliac Arteries

Abstract

The effect of hemodynamic shear stress on endothelial gene expression was investigated in the porcine iliac arteries. A novel statistical approach was applied to computational fluid dynamics simulations of the iliac artery flow field to identify three anatomical regions likely to experience high, medium, and low levels of time average shear stress magnitude. Subsequently, endothelial cell mRNA was collected from these regions in the iliac arteries of six swine and analyzed by DNA microarray. Gene set enrichment analysis demonstrated a strong tendency for genes upregulated or downregulated in one of the extreme shear environments (low or high, relative to medium) to be regulated in the same direction in the other extreme shear environment. This tendency was confirmed for specific genes by real-time quantitative PCR. Specifically, β-catenin, c-jun, VCAM-1, and MCP-1 were all upregulated in low and high shear stress regions relative to the medium shear stress region. eNOS expression was not significantly different in any of the regions. These results are consistent with the notion that endothelial cells chronically exposed to abnormally low or high shear levels in vivo exhibit similar genetic responses. Alternative explanations of this outcome are proposed, and its implications for the role of shear stress in atherogenesis are examined.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Barnes, S. E., and P. D. Weinberg. Contrasting patterns of spontaneous aortic disease in young and old rabbits. Arterioscler. Thromb. Vasc. Biol. 18:300–308, 1998.

    CAS  PubMed  Google Scholar 

  2. 2.

    Chan, B. P., W. M. Reichert, and G. A. Truskey. Synergistic effect of shear stress and streptavidin-biotin on the expression of endothelial vasodilator and cytoskeleton genes. Biotechnol. Bioeng. 88:750–758, 2004.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Friedman, M. H., J. M. Henderson, J. A. Aukerman, and P. A. Clingan. Effect of periodic alterations in shear on vascular macromolecular uptake. Biorheology 37:265–277, 2000.

    CAS  PubMed  Google Scholar 

  4. 4.

    Friedman, M. H., H. A. Himburg, and J. A. LaMack. Statistical hemodynamics: a tool for evaluating the effect of fluid dynamic forces on vascular biology in vivo. J. Biomech. Eng. 128:965–968, 2006.

    Article  PubMed  Google Scholar 

  5. 5.

    Heydarkhan-Hagvall, S., S. Chien, S. Nelander, Y. C. Li, S. Yuan, J. Lao, J. H. Haga, I. Lian, P. Nguyen, B. Risberg, and Y. S. Li. DNA microarray study on gene expression profiles in co-cultured endothelial and smooth muscle cells in response to 4- and 24-h shear stress. Mol. Cell. Biochem. 281:1–15, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Himburg, H. A., and M. H. Friedman. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J. Biomech. Eng. 128:852–856, 2006.

    Article  PubMed  Google Scholar 

  7. 7.

    Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Hsieh, H. J., N. Q. Li, and J. A. Frangos. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J. Cell. Physiol. 154:143–151, 1993.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Huo, Y., T. Wischgoll, and G. S. Kassab. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol. 293:H2959–H2970, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  11. 11.

    LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293:H2853–H2859, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    LaMack, J. A., H. A. Himburg, and M. H. Friedman. Distinct profiles of endothelial gene expression in hyperpermeable regions of the porcine aortic arch and thoracic aorta. Atherosclerosis 195:e35–e41, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    LaMack, J. A., H. A. Himburg, X. M. Li, and M. H. Friedman. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability. Ann. Biomed. Eng. 33:457–464, 2005.

    Article  PubMed  Google Scholar 

  14. 14.

    Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Nagel, T., N. Resnick, W. J. Atkinson, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94:885–891, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Noria, S., D. B. Cowan, A. I. Gotlieb, and B. L. Langille. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85:504–514, 1999.

    CAS  PubMed  Google Scholar 

  17. 17.

    Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert, Jr., and P. F. Davies. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl Acad. Sci. USA 101:2482–2487, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Ranjan, V., Z. Xiao, and S. L. Diamond. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am. J. Physiol. 269:H550–H555, 1995.

    CAS  PubMed  Google Scholar 

  19. 19.

    Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl Acad. Sci. USA 91:4678–4682, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102:15545–15550, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Tada, S., and J. M. Tarbell. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Ann. Biomed. Eng. 33:1202–1212, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Tsuboi, H., J. Ando, R. Korenaga, Y. Takada, and A. Kamiya. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem. Biophys. Res. Commun. 206:988–996, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, R. M. Nerem, and D. G. Harrison. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. 269:C1371–C1378, 1995.

    CAS  PubMed  Google Scholar 

  24. 24.

    Ukropec, J. A., M. K. Hollinger, and M. J. Woolkalis. Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp. Cell Res. 273:240–247, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Won, D., S. N. Zhu, M. Chen, A. M. Teichert, J. E. Fish, C. C. Matouk, M. Bonert, M. Ojha, P. A. Marsden, and M. I. Cybulsky. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am. J. Pathol. 171:1691–1704, 2007.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Xiao, Z., Z. Zhang, V. Ranjan, and S. L. Diamond. Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated. J. Cell. Physiol. 171:205–211, 1997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Charles S. Wallace, Ellen Dixon-Tulloch, Federico Lopez-Bertoni, and Kelley Burridge for technical assistance. Current affiliation of JAL is Milwaukee School of Engineering. This work was funded by NIH Grant HL-50442.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Morton H. Friedman.

Additional information

Associate Editor Julia E. Babensee oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

LaMack, J.A., Himburg, H.A., Zhang, J. et al. Endothelial Gene Expression in Regions of Defined Shear Exposure in the Porcine Iliac Arteries. Ann Biomed Eng 38, 2252–2262 (2010). https://doi.org/10.1007/s10439-010-0030-6

Download citation

Keywords

  • Shear stress
  • Endothelium
  • Gene expression
  • In vivo