Skip to main content
Log in

Shear Stress Variation Induced by Red Blood Cell Motion in Microvessel

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We simulated red blood cells flowing in microvessel to examine the induced wall shear stress variation. A typical peak-valley-peak structure is observed, and it is analyzed in terms of its magnitude, spatial influencing range, and temporal elapsed duration. Effects of red cell deformability, microvessel size, and flow velocity have been investigated. The corresponding variation characters have also been related to cell deformation and flow field. Simulation results show that the variation magnitude is mainly determined by the gap size between cell and vessel wall, while the spatial range of the shear stress variation depends on the cell length as well as the microvessel size. For a certain point on the vessel wall, the shear stress variation lasts a short time at a higher flow velocity, and vice versa. As the cell concentration in the microvessel increases, the shear stress variation structure changes accordingly with the two peaks from two close cells merging together, and eventually only one peak is observed at a hematocrit of 30.72%. However, the effect of hematocrit on the variation magnitude of shear stress is less obvious, and the dynamic nature of shear stress is still significant. This represents the first attempt to study the dynamic shear stress variation on microvessel as red blood cells flow by, and the information obtained in this study could be valuable to relevant research, for example, the mechanotransduction in the endothelia glycocalyx layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ando, J., and K. Yamamoto. Vascular mechanobiology: endothelial cell responses of fluid shear stress. Circ. J. 73:1983–1992, 2009.

    Article  CAS  PubMed  Google Scholar 

  2. Bagchi, P., P. C. Johnson, and A. S. Popel. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127:1070–1080, 2005.

    Article  PubMed  Google Scholar 

  3. Barber, J. O., J. P. Alberding, J. M. Restrepo, and T. W. Secomb. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Eng. 36:1690–1698, 2008.

    Article  PubMed  Google Scholar 

  4. Bhatnagar, P., E. Gross, and K. Krook. A model for collisional processes in gases I: small amplitude processes in charged and neutral one-component system. Phys. Rev. B 94(3):511–525, 1954.

    Article  CAS  Google Scholar 

  5. Cengel, Y. A., and J. M. Cimbala. Fluid Mechanics: Fundamentals and Applications, 2nd edn. New York, NY: McGraw Hill, 2010.

    Google Scholar 

  6. Damiano, E. R., D. Long, and M. L. Smith. Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics. J. Fluid Mech. 512:1–19, 2004.

    Article  Google Scholar 

  7. Dewey Jr., C. F., S. R. Bussolari, M. A. Gimbrone Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.

    Article  PubMed  Google Scholar 

  8. Dupin, M. M. M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.

    Article  Google Scholar 

  9. Evans, E. A. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests. Biophys. J. 43:27–30, 1983.

    Article  CAS  PubMed  Google Scholar 

  10. Feng, Z., and E. E. Michaelides. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problem. J. Comput. Phys. 195:602–628, 2004.

    Article  Google Scholar 

  11. Han, Y. F., S. Weinbaum, J. A. E. Spaan, and H. Vink. Large-deformation analysis of the elastic recoil of fibre layers in a brinkman medium with application to the endothelial glycocalyx. J. Fluid Mech. 554:217–235, 2006.

    Article  CAS  Google Scholar 

  12. Hochmuth, R. M., and R. E. Waugh. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Psychol. 49:209–219, 1987.

    CAS  Google Scholar 

  13. Kim, M. B., and I. H. Sarelius. Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Microcirculation 10:167–178, 2003.

    PubMed  Google Scholar 

  14. Langille, B. L., and S. L. Adamson. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48:481–488, 1981.

    CAS  PubMed  Google Scholar 

  15. Lipowsky, H. H., S. Kovalcheck, and B. W. Zweifach. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ. Res. 43:738–749, 1978.

    CAS  PubMed  Google Scholar 

  16. Malek, A. M., G. H. Gibbons, V. J. Dzau, and S. Izum. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor b chain in vascular endothelium. J. Clin. Invest. 92:2013–2021, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. N’Dri, N. A., W. Shyy, and R. Tran-Son-Tay. Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85:2273–2286, 2003.

    Article  PubMed  Google Scholar 

  18. Nerem, R. M., and M. J. Levesque. Vascular endothelial mophology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–177, 1981.

    Article  CAS  PubMed  Google Scholar 

  19. Ohno, M., G. H. Gibbons, V. J. Dzau, and J. P. Cooke. Shear stress elevates endothelial cGMP: role of a potassium channel and G protein coupling. Circulation 88:193–197, 1993.

    CAS  PubMed  Google Scholar 

  20. Okahara, K., J. Kambayashi, T. Ohnishi, Y. Fujiwara, T. Kawasaki, and M. Monden. Shear stress induces expression of cnp gene in human endothelial cells. FEBS Lett. 373:108–110, 1995.

    Article  CAS  PubMed  Google Scholar 

  21. Peskin, C. S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3):220–252, 1977.

    Article  Google Scholar 

  22. Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.

    Article  Google Scholar 

  23. Pozrikidis, C. Effect of membrane bending stiffness on the deformation of capusles in simple shear flow. J. Fluid Mech. 440:269–291, 2001.

    Article  CAS  Google Scholar 

  24. Pries, A. R., and T. W. Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289:H2657–H2664, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Reitsma, S., D. W. Slaaf, H. Vink, M. A. M. J. van Zandvoort, and M. G. A. oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Archiv.-Eur. J. Physiol. 454:345–359, 2007.

    Article  CAS  Google Scholar 

  26. Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Vescular Res. 43:251–269, 2006.

    Article  Google Scholar 

  27. Sakai, H., A. Sato, N. Okuda, S. Takeoka, N. Maeda, and E. Tsuchida. Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25 μm). Am. J. Physiol. Heart Circ. Physiol. 297:H583–H589, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. Sangani, A. S., and A. Acrivos. Slow flow past periodic arrays of cylinders with application to heat–transfer. Int. J. Multiphase Flow 8:193–206, 1982.

    Article  CAS  Google Scholar 

  29. Schmid-Schobein, G. W., S. Usami, R. Skalak, and S. Chien. Interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res. 19:45–70, 1980.

    Article  Google Scholar 

  30. Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. Heart Circ. Physiol. 274:H1016–H1022, 1998.

    CAS  Google Scholar 

  31. Secomb, T. W., R. Hsu, and A. R. Pries. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38:143–150, 2001.

    CAS  PubMed  Google Scholar 

  32. Secomb, T. W., R. Hsu, and A. R. Pries. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–H636, 2001.

    CAS  PubMed  Google Scholar 

  33. Secomb, T. W., R. Hsu, and A. P. Pries. Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer. Microcirculation 9:189, 2002.

    CAS  PubMed  Google Scholar 

  34. Secomb, T. W., B. Styp-Rekowska, and A. R. Pries. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann. Biomed. Eng. 35:755–765, 2007.

    Article  PubMed  Google Scholar 

  35. Skalak, R., and S. Chien. Handbook of Bioengineering. New York, NY: McGraw-Hill, 1987.

    Google Scholar 

  36. Song, J., W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77:3993–3999, 2005.

    Article  CAS  PubMed  Google Scholar 

  37. Stoltz, J. F., M. Singh, and P. Riha. Hemorheology in Practice. Amsterbam, Netherlands: IOS Press, 1999.

    Google Scholar 

  38. Succi, S. The Lattice Boltzmann Equation. Oxford: Oxford Univ. Press, 2001.

    Google Scholar 

  39. Tryggvason, G., B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169:708–759, 2001.

    Article  CAS  Google Scholar 

  40. Udaykumar, H. S., H.-C. Kan, W. Shyy, and R. Tran-Son-Tay. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids. J. Comput. Phys. 137:366–405, 1997.

    Article  Google Scholar 

  41. Vink, H., B. R. Duling, and J. A. E. Spaan. Mechanical properties of the endothelial surface layer. FASEB J. 13:A11, 1999.

    Google Scholar 

  42. Waugh, R. E., and R. M. Hochmuth. Chapter 60: mechanics and deformability of hematocytes. In: Biomedical Engineering Fundamentals, 3rd edn., edited by J. D. Bronzino. Boca Raton, FL: CRC, 2006, pp. 60–63.

  43. Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. 100:7988–7995, 2003.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, J., P. C. Johnson, and A. S. Popel. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4:285–295, 2007.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, J., P. C. Johnson, and A. S. Popel. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J. Biomech. 41:47–55, 2008.

    Article  PubMed  Google Scholar 

  46. Zhang, J., P. C. Johnson, and A. S. Popel. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77:265–272, 2009.

    Article  PubMed  Google Scholar 

  47. Zhang, J., and D. Y. Kwok. Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22:4998–5004, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, J., and D. Y. Kwok. Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Phys. Rev. E 73:047702, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC) and the Laurentian University Research Fund (LURF). JZ acknowledges the helpful discussion with Prof. Aleksander S. Popel at Johns Hopkins University. The authors also thank the anonymous associate editor and reviewers for their critical comments and constructive suggestions. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: http://www.sharcnet.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Zhang.

Additional information

Associate Editor Nick Rhodes oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, W., Zhang, J. Shear Stress Variation Induced by Red Blood Cell Motion in Microvessel. Ann Biomed Eng 38, 2649–2659 (2010). https://doi.org/10.1007/s10439-010-0017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0017-3

Keywords