Skip to main content
Log in

Mechanical Interactions of Mouse Mammary Gland Cells with Collagen in a Three-Dimensional Construct

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An effort to understand the development of breast cancer motivates the study of mammary gland cells and their interactions with the extracellular matrix. A mixture of mammary gland epithelial cells (normal murine mammary gland), collagen, and fluorescent beads was loaded into microchannels and observed via four-dimensional imaging. Collagen concentrations of 1.3, 2, and 3 mg/mL were used. The displacements of the beads were used to calculate strains in the 3D matrix. To ensure physiologically relevant materials properties for analysis, the collagen was characterized using independent tensile testing with strain rates in the range of those measured in the cell–gel constructs. 3D elastic theory for an isotropic material was employed to calculate the stress. The technique presented adds to the field of measuring cell-generated stresses by providing the capability of measuring 3D stresses locally around a single cell and using physiologically relevant materials properties for analysis. The highest strains were observed in the most compliant matrix. Additionally, the stresses fluctuated over time due to the cells’ interaction with the collagen matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

E :

Young’s modulus (kPa)

\( \dot{\varepsilon } \) :

Strain rate (min−1)

ε :

Strain (μm/μm)

u :

Displacement (mm)

Δx :

Original distance in x (μm)

Δx′:

New distance in x (μm)

σ :

Stress (Pa)

C :

Elastic modulus matrix (kPa)

G :

First Lame elastic parameter and shear modulus (kPa)

λ :

Second Lame elastic parameter (kPa)

ν :

Poisson’s ratio (dimensionless)

Δt :

Change in time (min)

References

  1. Balaban, N. Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    Article  PubMed  CAS  Google Scholar 

  2. Beebe, D. J., G. A. Mensing, and G. M. Walker. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4:261–286, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Bissell, M. J., D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546, 2002.

    Article  PubMed  Google Scholar 

  4. Bloom, R. J., J. P. George, A. Celedon, S. X. Sun, and D. Wirtz. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95:4077–4088, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Boyd, N. F., H. M. Jensen, G. Cooke, and H. L. Han. Relationship between mammographic and histological risk-factors for breast-cancer. J. Natl. Cancer Inst. 84:1170–1179, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Boyd, N. F., G. A. Lockwood, J. W. Byng, D. L. Tritchler, and M. J. Yaffe. Mammographic densities and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 7:1133–1144, 1998.

    PubMed  CAS  Google Scholar 

  7. Burton, K., and D. L. Taylor. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282:C595–C605, 2002.

    PubMed  CAS  Google Scholar 

  9. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712, 2001.

    Article  PubMed  CAS  Google Scholar 

  10. Delvoye, P., P. Wiliquet, J. L. Leveque, B. V. Nusgens, and C. M. Lapiere. Measurement of mechanical forces generated by skin fibroblasts embedded in a 3-dimensional collagen gel. J. Invest. Dermatol. 97:898–902, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez, P., and A. R. Bausch. The compaction of gels by cells: a case of collective mechanical activity. Integr. Biol. 1:252–259, 2009.

    Article  CAS  Google Scholar 

  14. Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.

    Article  PubMed  Google Scholar 

  15. Friedl, P., and E. B. Brocker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94:9114–9118, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Ghosh, K., et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28:671–679, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13:264–269, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Harris, A. K., P. Wild, and D. Stopak. Silicone-rubber substrata—new wrinkle in the study of cell locomotion. Science 208:177–179, 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang, H. M., and F. Grinnell. Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 16:5070–5076, 2005.

    Article  PubMed  CAS  Google Scholar 

  21. Jo, B. H., L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9:76–81, 2000.

    Article  CAS  Google Scholar 

  22. Karamichos, D., R. A. Brown, and V. Mudera. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression. J. Biomed. Mater. Res. A 83A:887–894, 2007.

    Article  CAS  Google Scholar 

  23. Keely, P. J., J. E. Wu, and S. A. Santoro. The spatial and temporal expression of the alpha-2-beta-1 integrin and its ligands, collagen-I, collagen-IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59:1–13, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Kumar, S., et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:3762–3773, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, J., M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127:1957–1964, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Legant, W. R., et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl Acad. Sci. USA 106:10097–10102, 2009.

    Article  PubMed  Google Scholar 

  27. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Loftis, M. J., D. Sexton, and W. Carver. Effects of collagen density on cardiac fibroblast behavior and gene expression. J. Cell. Physiol. 196:504–511, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Lopez-Garcia, M. d. C., D. J. Beebe, and W. C. Crone. Young’s modulus of collagen at slow displacement rates. Biomed. Mater. Eng. 2009 (submitted).

  30. McDonald, J. C., and G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–499, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Meyvantsson, I., J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe. Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8:717–724, 2008.

    Article  PubMed  CAS  Google Scholar 

  32. Miron-Mendoza, M., J. Seemann, and F. Grinnell. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol. Biol. Cell 19:2051–2058, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Munevar, S., Y. L. Wang, and M. Dembo. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80:1744–1757, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. Norman, J. J., V. Mukundan, D. Bernstein, and B. L. Pruitt. Microsystems for biomechanical measurements. Pediatr. Res. 63:576–583, 2008.

    Article  PubMed  Google Scholar 

  35. Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005.

    Article  PubMed  Google Scholar 

  36. Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Pelham, R. J., and Y. L. Wang. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10:935–945, 1999.

    PubMed  CAS  Google Scholar 

  38. Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.

    Article  PubMed  CAS  Google Scholar 

  39. Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:11, 2008.

    Article  PubMed  CAS  Google Scholar 

  40. Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–5384, 2008.

    Article  PubMed  CAS  Google Scholar 

  41. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19:1573–1579, 2003.

    Article  CAS  Google Scholar 

  42. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.

    Article  PubMed  CAS  Google Scholar 

  43. Rhee, S., and F. Grinnell. Fibroblast mechanics in 3D collagen matrices. Adv. Drug Deliv. Rev. 59:1299–1305, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Rhee, S., H. Jiang, C. H. Ho, and F. Grinnell. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc. Natl Acad. Sci. USA 104:5425–5430, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Roeder, B. A., K. Klod, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. Trans. ASME 124:214–222, 2002.

    Article  Google Scholar 

  46. Stamenovic, D., S. M. Mijailovich, I. M. Tolic-Norrelykke, J. X. Chen, and N. Wang. Cell prestress. II. Contribution of microtubules. Am. J. Physiol. Cell Physiol. 282:C617–C624, 2002.

    PubMed  CAS  Google Scholar 

  47. Tamariz, E., and F. Grinnell. Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol. Biol. Cell 13:3915–3929, 2002.

    Article  PubMed  CAS  Google Scholar 

  48. Tan, J. L., et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100:1484–1489, 2003.

    Article  PubMed  CAS  Google Scholar 

  49. Tan, W., and T. A. Desai. Microfluidic patterning of cellular biopolymer matrices for biomimetic 3-D structures. Biomed. Microdev. 5:235–244, 2003.

    Article  CAS  Google Scholar 

  50. Vailhe, B., X. Ronot, P. Tracqui, Y. Usson, and L. Tranqui. In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta(3) integrin localization. In Vitro Cell. Dev. Biol. Anim. 33:763–773, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Wang, N., et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98:7765–7770, 2001.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, J. H. C., and J. S. Lin. Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 6:361–371, 2007.

    Article  PubMed  Google Scholar 

  53. Wang, N., E. Ostuni, G. M. Whitesides, and D. E. Ingber. Micropatterning tractional forces in living cells. Cell Motil. Cytoskeleton 52:97–106, 2002.

    Article  PubMed  Google Scholar 

  54. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400, 2008.

    Article  PubMed  CAS  Google Scholar 

  55. Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.

    Article  PubMed  CAS  Google Scholar 

  56. Wozniak, M. A., R. Desai, P. A. Solski, C. J. Der, and P. J. Keely. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163:583–595, 2003.

    Article  PubMed  CAS  Google Scholar 

  57. Wozniak, M. A., and P. J. Keely. Use of three-dimensional collagen gels to study mechanotransduction in T47D breast epithelial cells. Biol. Proced. Online 7:144–161, 2005.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng, X. Y., and X. Zhang. An optical Moire technique for cell traction force mapping. J. Micromech. Microeng. 18:125006–125015, 2008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Patricia Keely’s lab at the University of Wisconsin – Madison for allowing the use of their microscope, especially Dr. Matt Conklin for his time and assistance and Prof. Keely for helpful conversations. The authors would also like to thank Erich Zeiss for all of his help with the imaging and use of Slidebook software. This work was possible via funding from the Harriet Jenkins Pre-doctoral Fellowship (JPFP-NASA); Graduate Engineering Research Scholars (GERS) of the College of Engineering, University of Wisconsin – Madison; and the Ruth Dickie Research Scholarship from the University of Wisconsin Beta Chapter of Sigma Delta Epsilon-Graduate Women in Science (SDE-GWIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. Crone.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Garcia, M.d.C., Beebe, D.J. & Crone, W.C. Mechanical Interactions of Mouse Mammary Gland Cells with Collagen in a Three-Dimensional Construct. Ann Biomed Eng 38, 2485–2498 (2010). https://doi.org/10.1007/s10439-010-0015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0015-5

Keywords