Skip to main content

Advertisement

Log in

Incorporating Histology into a 3D Microscopic Computer Model of Myocardium to Study Propagation at a Cellular Level

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We introduce a 3D model of cardiac tissue to study at a microscopic level the relationship between tissue morphology and propagation of depolarization. Unlike the classical bidomain approach, in which tissue properties are described by the apparent conductivity of the tissue, in this “microdomain” approach, we included histology by modeling the actual shape of the intracellular and extracellular spaces that contain spatially distributed gap-junctions and membranes. The histological model of the tissue was generated by a computer algorithm that can be tuned to model different histological changes. For healthy tissue, the model predicted a realistic conduction velocity of 0.42 m/s based solely on the parameters derived from histology. A comparison with a brick-shaped, simplified model showed that conduction depended to a moderate extent on the shape of myocytes; a comparison with a one-dimensional bidomain model with the same overall shape and structure showed that the apparent conductivity of the tissue can be used to create an equivalent bidomain model. In summary, the microdomain approach offers a means of directly incorporating structural and functional parameters into models of cardiac activation and propagation and thus provides a valuable bridge between the cellular and tissue domains in the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barnard, A. C. L., I. M. Duck, and M. S. Lynn. The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations. Biophys. J. 7:433–462, 1967.

    Google Scholar 

  2. Baumann, S. B., D. R. Wozny, S. K. Kelly, and F. M. Meno. The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 44:220–223, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Brown, A. M., K. S. Lee, and T. Powell. Voltage clamp and internal perfusion of single rat heart muscle cells. J. Physiol. 318:455–477, 1981.

    CAS  PubMed  Google Scholar 

  4. Campbell, S. E., A. M. Gerdes, and T. D. Smith. Comparison of regional differences in cardiac myocytes dimensions in rats, hamsters and guinea pigs. Anat. Rec. 219:53–59, 1987.

    Article  CAS  PubMed  Google Scholar 

  5. Cascio, W. E., H. Yang, T. A. Johnson, B. J. Muller-Borer, and J. J. Lemasters. Electrical properties and conduction in perfused papillary muscle. Circ. Res. 89:807–814, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–346, 1976.

    CAS  PubMed  Google Scholar 

  7. Crank, J., and O. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Phil. Soc. 43:50–67, 1947.

    Article  Google Scholar 

  8. Forbes, M. S., and N. Sperelakis. Chapter 1—ultrastructure of mammalian cardiac muscle. In: Physiology and Pathophysiology of the Heart (3rd ed.). Norwell, MA: Kluwer Academic Publishers, 1995, pp. 1–35.

  9. Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41:2231–2249, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Gerdes, A. M., and F. H. Kasten. Morphometric study of endomyocardium and epimyocardium of the left ventricle in adult dogs. Am. J. Anat. 159(4):389–394, 1980.

    Article  CAS  PubMed  Google Scholar 

  11. Geselowitz, D. B. On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources. IEEE Trans. Magn. MAG-6(2):346–347, 1970.

    Article  Google Scholar 

  12. Harrild, D. M., and C. S. Henriquez. A computer model of normal conduction in the human atria. Circ. Res. 87:e25, 2000.

    CAS  PubMed  Google Scholar 

  13. Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21:1–77, 1993.

    CAS  PubMed  Google Scholar 

  14. Hoyt, R. H., M. L. Cohen, and J. E. Saffitz. Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ. Res. 64(3):563–574, 1989.

    CAS  PubMed  Google Scholar 

  15. Luo, C. H., and Y. Rudy. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68(6):1501–1526, 1991.

    CAS  PubMed  Google Scholar 

  16. Metzger, P., and R. Weingart. Electric current flow in cell pairs isolated from adult rat hearts. J. Physiol. 366:177–195, 1985.

    CAS  PubMed  Google Scholar 

  17. Peters, N. S., N. J. Severs, S. M. Rothery, C. Lincoln, M. H. Yacoub, and C. R. Green. Spatiotempoaral relation between gap junctions and fascia adherens junctions during human ventricular myocardium. Circulation 90:713–725, 1994.

    CAS  PubMed  Google Scholar 

  18. Plonsey, R., and D. B. Heppner. Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29:657–664, 1967.

    Article  CAS  PubMed  Google Scholar 

  19. Roberts, D. E., L. T. Hersch, and A. M. Scher. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity and tissue resistivity. Circ. Res. 44:701–712, 1979.

    CAS  PubMed  Google Scholar 

  20. Roberts, D. E., and A. M. Scher. Effect of tissue anisotropy on extracellualar potential fields in canine myocardium in situ. Circ. Res. 50:342–351, 1982.

    CAS  PubMed  Google Scholar 

  21. Roberts, S. F., J. G. Stinstra, and C.S. Henriquez. Discrete multidomain: a unique computational model to study effects of a discontinuous cardiac microstructure on impulse propagation. Biophys. J. 95:3724–3737, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Satoh, H., L. M. D. Delbridge, L. A. Blatter, and D. M. Bers. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys. J. 70:1494–1504, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. Shome, S., J. G. Stinstra, C. S. Henriquez, and R. S. MacLeod. Influence of extracellular potassium and reduced extracellular space on conduction velocity during acute ischemia: a simulation study. J. Electrocardiol. 39:S84–S85, 2006.

    Article  Google Scholar 

  24. Sommer, J. R., and E. A. Johnson. Ultrastructure of cardiac muscle. In: Handbook of Physiology, Section 2: The Cardiovascular System, Vol. 1. American Physiological Society, 1979, pp. 113–186.

  25. Spach, M. S. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections. PACE 20:397–413, 1997.

    CAS  PubMed  Google Scholar 

  26. Spach, M. S., J. F. Heidlage, E. R. Darken, E. Hofer, K. H. Raines, and C. F. Starmer. Cellular dvmax/dt reflects both membrane properties and the load presented by adjoining cells. Am. J. Physiol. (Heart Circ. Physiol.) 32:H1855–H1863, 1992.

    Google Scholar 

  27. Stinstra, J. G., B. Hopenfeld, and R. S. MacLeod. On the passive cardiac conductivity. Ann. Biomed. Eng. 33(12):1743–1751, 2005.

    Article  PubMed  Google Scholar 

  28. Stinstra, J. G., S. Roberts, J. Pormann, R. S. MacLeod, and C. S. Henriquez. A model of 3d propagation in discrete cardiac tissue. Comput. Cardiol. 33:41–44, 2006.

    PubMed  Google Scholar 

  29. Stinstra, J. G., S. Shome, B. Hopenfeld, and R. S. MacLeod. Modeling the passive cardiac electrical conductivity during ischemia. Med. Biol. Eng. Comput. 43(6):776–782, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Trautman, E. D., and R. S. Newbower. A practical analysis of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 30(3):141–153, 1983.

    Article  CAS  PubMed  Google Scholar 

  31. Trayanova, N., G. Plank, and B. Rodriguez. What have we learned from mathematical models of defibrillation and postshock arrythmogenesis? Application of bidomain simulations. Heart Rhythm 3(10):1232–1235, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support for this work through NIH grants RO1 HL076767 and P41-RR12553-07 as well as the Nora Eccles Treadwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Stinstra.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stinstra, J., MacLeod, R. & Henriquez, C. Incorporating Histology into a 3D Microscopic Computer Model of Myocardium to Study Propagation at a Cellular Level. Ann Biomed Eng 38, 1399–1414 (2010). https://doi.org/10.1007/s10439-009-9883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9883-y

Keywords

Navigation