Skip to main content
Log in

Quantitative Three-Dimensional Wall Motion Analysis Predicts Ischemic Region Size and Location

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stress echocardiography is an important screening test for coronary artery disease. Currently, cardiologists rely on visual analysis of left ventricular (LV) wall motion abnormalities, which is subjective and qualitative. We previously used finite-element models of the regionally ischemic left ventricle to develop a wall motion measure, 3DFS, for predicting ischemic region size and location from real-time 3D echocardiography (RT3DE). The purpose of this study was to validate these methods against regional blood flow measurements during regional ischemia and to compare the accuracy of our methods to the current state of the art, visual scoring by trained cardiologists. We acquired RT3DE images during 20 brief (<2 min) coronary occlusions in dogs and determined ischemic region size and location by microsphere-based measurement of regional perfusion. We identified regions of abnormal wall motion using 3DFS and by blinded visual scoring. 3DFS predicted ischemic region size well (correlation r 2 = 0.64 against microspheres, p < 0.0001), reducing error by more than half compared to visual scoring (8 ± 9% vs. 19 ± 14%, p < 0.05), while localizing the ischemic region with equal accuracy. We conclude that 3DFS is an objective, quantitative measure of wall motion that localizes acutely ischemic regions as accurately as wall motion scoring while providing superior quantification of ischemic region size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ahmad, M., T. Xie, M. McCulloch, G. Abreo, and M. Runge. Real-time three-dimensional dobutamine stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. J. Am. Coll. Cardiol. 37(5):1303–1309, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong, W. F., J. O’Donnell, T. Ryan, and H. Feigenbaum. Effect of prior myocardial infarction and extent and location of coronary disease on accuracy of exercise echocardiography. J. Am. Coll. Cardiol. 10(3):531–538, 1987.

    CAS  PubMed  Google Scholar 

  3. Biagini, E., A. Elhendy, J. J. Bax, A. F. Schinkel, and D. Poldermans. The use of stress echocardiography for prognostication in coronary artery disease: an overview. Curr. Opin. Cardiol. 20(5):386–394, 2005.

    Article  PubMed  Google Scholar 

  4. Bjornstad, K., J. Maehle, S. Aakhus, H. G. Torp, L. K. Hatle, and B. A. Angelsen. Evaluation of reference systems for quantitative wall motion analysis from three-dimensional endocardial surface reconstruction: an echocardiographic study in subjects with and without myocardial infarction. Am. J. Card. Imaging 10(4):244–253, 1996.

    CAS  PubMed  Google Scholar 

  5. Caiani, E. G., C. Corsi, J. Zamorano, L. Sugeng, P. MacEneaney, L. Weinert, R. Battani, J. L. Gutierrez, R. Koch, L. Perez de Isla, V. Mor-Avi, and R. M. Lang. Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 18(8):779–788, 2005.

    Article  PubMed  Google Scholar 

  6. Chuang, M. L., R. A. Parker, M. F. Riley, M. A. Reilly, R. B. Johnson, V. J. Korley, A. B. Lerner, and P. S. Douglas. Three-dimensional echocardiography improves accuracy and compensates for sonographer inexperience in assessment of left ventricular ejection fraction. J. Am. Soc. Echocardiogr. 12(5):290–299, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Corsi, C., R. M. Lang, F. Veronesi, L. Weinert, E. G. Caiani, P. MacEneaney, C. Lamberti, and V. Mor-Avi. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112(8):1161–1170, 2005.

    Article  PubMed  Google Scholar 

  8. Dolan, M. S., K. Riad, A. El-Shafei, S. Puri, K. Tamirisa, M. Bierig, J. St Vrain, L. McKinney, E. Havens, K. Habermehl, L. Pyatt, M. Kern, and A. J. Labovitz. Effect of intravenous contrast for left ventricular opacification and border definition on sensitivity and specificity of dobutamine stress echocardiography compared with coronary angiography in technically difficult patients. Am. Heart J. 142(5):908–915, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Elhendy, A., D. W. Mahoney, B. K. Khandheria, T. E. Paterick, K. N. Burger, and P. A. Pellikka. Prognostic significance of the location of wall motion abnormalities during exercise echocardiography. J. Am. Coll. Cardiol. 40(9):1623–1629, 2002.

    Article  PubMed  Google Scholar 

  10. Gopal, A. S., Z. Shen, P. M. Sapin, A. M. Keller, M. J. Schnellbaecher, D. W. Leibowitz, O. O. Akinboboye, R. A. Rodney, D. K. Blood, and D. L. King. Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation 92(4):842–853, 1995.

    CAS  PubMed  Google Scholar 

  11. Herz, S. L., C. M. Ingrassia, S. Homma, K. D. Costa, and J. W. Holmes. Parameterization of left ventricular wall motion for detection of regional ischemia. Ann. Biomed. Eng. 33(7):912–919, 2005.

    Article  PubMed  Google Scholar 

  12. Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol. 52(2):101–164, 1988.

    Article  CAS  PubMed  Google Scholar 

  13. Kowallik, P., R. Schulz, B. D. Guth, A. Schade, W. Paffhausen, R. Gross, and G. Heusch. Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83(3):974–982, 1991.

    CAS  PubMed  Google Scholar 

  14. Kuhl, H. P., M. Schreckenberg, D. Rulands, M. Katoh, W. Schafer, G. Schummers, A. Bucker, P. Hanrath, and A. Franke. High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J. Am. Coll. Cardiol. 43(11):2083–2090, 2004.

    Article  PubMed  Google Scholar 

  15. Kuo, J., B. Z. Atkins, K. A. Hutcheson, and O. T. von Ramm. Left ventricular wall motion analysis using real-time three-dimensional ultrasound. Ultrasound Med. Biol. 31(2):203–211, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Lang, R. M., M. Bierig, R. B. Devereux, F. A. Flachskampf, E. Foster, P. A. Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. S. Shanewise, S. D. Solomon, K. T. Spencer, M. S. Sutton, and W. J. Stewart. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18(12):1440–1463, 2005.

    Article  PubMed  Google Scholar 

  17. Marcovitz, P. A., V. Shayna, R. A. Horn, A. Hepner, and W. F. Armstrong. Value of dobutamine stress echocardiography in determining the prognosis of patients with known or suspected coronary artery disease. Am. J. Cardiol. 78(4):404–408, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Matsumura, Y., T. Hozumi, K. Arai, K. Sugioka, K. Ujino, Y. Takemoto, H. Yamagishi, M. Yoshiyama, and J. Yoshikawa. Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. Eur. Heart J. 26(16):1625–1632, 2005.

    Article  PubMed  Google Scholar 

  19. Moller, J. E., G. S. Hillis, J. K. Oh, G. S. Reeder, B. J. Gersh, and P. A. Pellikka. Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am. Heart J. 151(2):419–425, 2006.

    Article  PubMed  Google Scholar 

  20. Mor-Avi, V., L. Sugeng, L. Weinert, P. MacEneaney, E. G. Caiani, R. Koch, I. S. Salgo, and R. M. Lang. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 110(13):1814–1818, 2004.

    Article  PubMed  Google Scholar 

  21. Pearlman, J. D., R. D. Hogan, P. S. Wiske, T. D. Franklin, and A. E. Weyman. Echocardiographic definition of the left ventricular centroid. I. Analysis of methods for centroid calculation from a single tomogram. J. Am. Coll. Cardiol. 16(4):986–992, 1990.

    CAS  PubMed  Google Scholar 

  22. Pellikka, P. A., V. L. Roger, J. K. Oh, F. A. Miller, J. B. Seward, and A. J. Tajik. Stress echocardiography. Part II. Dobutamine stress echocardiography: techniques, implementation, clinical applications, and correlations. Mayo Clin. Proc. 70(1):16–27, 1995.

    CAS  PubMed  Google Scholar 

  23. Picano, E., F. Lattanzi, A. Orlandini, C. Marini, and A. L’Abbate. Stress echocardiography and the human factor: the importance of being expert. J. Am. Coll. Cardiol. 17(3):666–669, 1991.

    Article  CAS  PubMed  Google Scholar 

  24. Pulerwitz, T., K. Hirata, Y. Abe, R. Otsuka, S. Herz, K. Okajima, Z. Jin, M. R. Di Tullio, and S. Homma. Feasibility of using a real-time 3-dimensional technique for contrast dobutamine stress echocardiography. J. Am. Soc. Echocardiogr. 19(5):540–545, 2006.

    Article  PubMed  Google Scholar 

  25. Sapin, P. M., G. B. Clarke, A. S. Gopal, M. D. Smith, and D. L. King. Validation of three-dimensional echocardiography for quantifying the extent of dyssynergy in canine acute myocardial infarction: comparison with two-dimensional echocardiography. J. Am. Coll. Cardiol. 27(7):1761–1770, 1996.

    Article  CAS  PubMed  Google Scholar 

  26. Sawada, S. G., D. S. Segar, T. Ryan, S. E. Brown, A. M. Dohan, R. Williams, N. S. Fineberg, W. F. Armstrong, and H. Feigenbaum. Echocardiographic detection of coronary artery disease during dobutamine infusion. Circulation 83(5):1605–1614, 1991.

    CAS  PubMed  Google Scholar 

  27. Segar, D. S., S. E. Brown, S. G. Sawada, T. Ryan, and H. Feigenbaum. Dobutamine stress echocardiography: correlation with coronary lesion severity as determined by quantitative angiography. J. Am. Coll. Cardiol. 19(6):1197–1202, 1992.

    Article  CAS  PubMed  Google Scholar 

  28. Takuma, S., T. Ota, T. Muro, T. Hozumi, R. Sciacca, M. R. Di Tullio, D. K. Blood, J. Yoshikawa, and S. Homma. Assessment of left ventricular function by real-time 3-dimensional echocardiography compared with conventional noninvasive methods. J. Am. Soc. Echocardiogr. 14(4):275–284, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Vlassak, I., D. N. Rubin, J. A. Odabashian, M. J. Garcia, L. M. King, S. S. Lin, J. K. Drinko, A. J. Morehead, D. L. Prior, C. R. Asher, A. L. Klein, and J. D. Thomas. Contrast and harmonic imaging improves accuracy and efficiency of novice readers for dobutamine stress echocardiography. Echocardiography 19(6):483–488, 2002.

    Article  PubMed  Google Scholar 

  30. Walimbe, V., M. Garcia, O. Lalude, J. Thomas, and R. Shekhar. Quantitative real-time 3-dimensional stress echocardiography: a preliminary investigation of feasibility and effectiveness. J. Am. Soc. Echocardiogr. 20(1):13–22, 2007.

    Article  PubMed  Google Scholar 

  31. Wiske, P. S., J. D. Pearlman, R. D. Hogan, T. D. Franklin, and A. E. Weyman. Echocardiographic definition of the left ventricular centroid. II. Determination of the optimal centroid during systole in normal and infarcted hearts. J. Am. Coll. Cardiol. 16(4):993–999, 1990.

    Article  CAS  PubMed  Google Scholar 

  32. Yao, J., Q. L. Cao, N. Masani, A. Delabays, G. Magni, P. Acar, C. Laskari, and N. G. Pandian. Three-dimensional echocardiographic estimation of infarct mass based on quantification of dysfunctional left ventricular mass. Circulation 96(5):1660–1666, 1997.

    CAS  PubMed  Google Scholar 

  33. Yao, S. S., E. Qureshi, A. Syed, and F. A. Chaudhry. Novel stress echocardiographic model incorporating the extent and severity of wall motion abnormality for risk stratification and prognosis. Am. J. Cardiol. 94(6):715–719, 2004.

    Article  PubMed  Google Scholar 

  34. Zwas, D. R., S. Takuma, S. Mullis-Jansson, A. Fard, H. Chaudhry, H. Wu, M. R. Di Tullio, and S. Homma. Feasibility of real-time 3-dimensional treadmill stress echocardiography. J. Am. Soc. Echocardiogr. 12(5):285–289, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by an Established Investigator Award from the American Heart Association (JWH) and by NIH R01 HL085160 (JWH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, S.L., Hasegawa, T., Makaryus, A.N. et al. Quantitative Three-Dimensional Wall Motion Analysis Predicts Ischemic Region Size and Location. Ann Biomed Eng 38, 1367–1376 (2010). https://doi.org/10.1007/s10439-009-9880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9880-1

Keywords

Navigation