Skip to main content

Advertisement

Log in

Lipids and Collagen Matrix Restrict the Hydraulic Permeability Within the Porous Compartment of Adult Cortical Bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Beno, T., Y. Yoon, S. C. Cowin, and S. P. Fritton. Estimation of bone permeability using accurate microstructural measurements. J. Biomech. 39:2378–2387, 2006.

    Article  PubMed  Google Scholar 

  2. Berg, R. A. Determination of 3- and 4-hydroxyproline. Methods Enzymol. A 82:372–398, 1982.

    Article  CAS  Google Scholar 

  3. Berthiaume, F., and J. A. Frangos. Fluid flow increases membrane permeability to merocyanine 540 in human endothelial cells. Biochim. Biophys. Acta 1191:209–218, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. Black, J., R. Mattson, and E. Korostoff. Haversian osteons: size distribution, internal structure, and orientation. J. Biomed. Mater. Res. 8:299–319, 1974.

    Article  CAS  PubMed  Google Scholar 

  5. Buechner, P. M., R. S. Lakes, C. Swan, and R. A. Brand. A broadband visoelastic spectroscopic study of bovine bone: implications for fluid flow. Ann. Biomed. Eng. 29:719–728, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone-role of lacunocanalicular network. FASEB J. 13(suppl.):S101–S112, 1999.

    CAS  PubMed  Google Scholar 

  7. Cooper, R. R., J. W. Milgram, and R. A. Robinson. Morphology of the osteon: an electron microscopic study. J. Bone Joint Surg. Am. 48:1239–1271, 1966.

    CAS  PubMed  Google Scholar 

  8. Dillaman, R. M. Movement of ferritin in the 2-day-old chick femur. Anat. Rec. 209:445–453, 1984.

    Article  CAS  PubMed  Google Scholar 

  9. Dirksen, T. R., and G. V. Marinetti. Lipids of bovine Enamel and dentin and human bone. Calc. Tiss. Res. 6:1–10, 1970.

    Article  CAS  Google Scholar 

  10. Hillsley, M. V., and J. A. Frangos. Review: bone tissue engineering: the role of interstitial fluid flow. Biotechnol. Bioeng. 43:573–581, 1994.

    Article  CAS  PubMed  Google Scholar 

  11. Irving, J. T., and R. E. Wuthier. Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin. Orthop. Rel. Res. 56:237–260, 1968.

    CAS  Google Scholar 

  12. Johnson, M. W. Behavior of fluid in stressed bone and cellular stimulation. Calcif. Tiss. Int. 36(Suppl 1):S72–S76, 1984.

    Article  Google Scholar 

  13. Klein-Nulend, J., A. van der Plas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, and E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9(5):441–445, 1995.

    CAS  PubMed  Google Scholar 

  14. Knothe Tate, M. L., R. Steck, M. R. Forwood, and P. Niederer. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J. Exp. Biol. 203(Pt 18):2737–4525, 2000.

    CAS  PubMed  Google Scholar 

  15. Leach, A. A. The lipids of ox compact bone. Biochem. J. 69(3):429–432, 1958.

    CAS  PubMed  Google Scholar 

  16. Li, G. P., J. T. Bronk, K. N. An, and P. J. Kelly. Permeability of cortical bone of canine tibia. Microvasc. Res. 34:302–310, 1987.

    Article  CAS  PubMed  Google Scholar 

  17. McCalden, R. W., J. A. McGeough, M. B. Barker, and C. M. Court-Brown. Age-related changes in tensile properties of cortical bone. The relative importance of changes in porosity, mineralization and microstructure. J. Bone Joint Surg. Am. 75(8):1193–1205, 1993.

    CAS  PubMed  Google Scholar 

  18. Muellar, K. H., A. Trias, and R. D. Ray. Bone density and composition: age-related and pathological changes in water and mineral content. J. Bone Joint Surg. 48-A:140–148, 1966.

    Google Scholar 

  19. Pietrazk, W. S., and J. Woodell-May. The composition of human cortical allograft bone derived from FDA/AATB-screened donor. J. Craniofac. Surg. 16(4):579–585, 2005.

    Article  Google Scholar 

  20. Robinson, L. G., and E. R. Pugh. The determination of serum cholesterol. US Armed Forces Med. J. 9(4):501–507, 1957.

    Google Scholar 

  21. Sander, E. A., and E. A. Nauman. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit. Rev. Biomed. Eng. 31(1):1–26, 2003.

    Article  PubMed  Google Scholar 

  22. Shimko, D. A., and E. A. Nauman. Development and characterization of a porous poly (methacrylate) scaffold with controllable modulus and permeability. J. Biomed. Mater. Res. B Appl. Biomater. 80B:360–369, 2007.

    Article  CAS  Google Scholar 

  23. Simonds, W. F., G. Koski, R. A. Streaty, L. M. Hjelmeland, and W. A. Klee. Solubilization of active opiate receptors. Proc. Natl. Acad. Sci. USA 77(8):4623–4627, 1980.

    Article  CAS  PubMed  Google Scholar 

  24. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, T., S. Ueda, K. Takahashi, and R. O. Scow. pH-dependent multilamellar structures in fetal mouse bone: possible involvement of fatty acids in bone mineralization. Am. J. Physiol. Cell Physiol. 266(35):C590–C600, 1995.

    Google Scholar 

  26. Toroian, D., J. Lim, and P. A. Price. The size exclusion characteristics of type I collagen-implications for the role of noncollagenous bone constituents. J. Biol. Chem. 282(31):22437–22447, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L., C. Ciani, S. B. Doty, and S. P. Fritton. Delineating bone’s interstitial fluid pathway in vivo. Bone 34:499–509, 2004.

    Article  PubMed  Google Scholar 

  28. Weinger, J. M., and M. E. Holtrop. An ultrastructural study of bone cells: the occurrence of microtubules, microfilaments and tight junctions. Calcif. Tiss. Res. 14:15–29, 1974.

    Article  CAS  Google Scholar 

  29. Winet, H. A bone fluid flow hypothesis for muscle pump-driven capillary filtration: II proposed role for exercise in erodible scaffold implant incorporation. Eur. Cells Mater. 6:1–11, 2003.

    CAS  Google Scholar 

  30. Wuthier, R. E. Lipids of matrix vesicles. Fed. Proc. 35(2):117–121, 1976.

    CAS  PubMed  Google Scholar 

  31. Zaffe, D. Some considerations on biomaterials and bone. Micron 36(7–8):583–592, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided in part by the Doctoral Dissertation Defense Program of Cleveland State University. We would like to acknowledge the Cleveland Clinic Musculoskeletal Core Center funded in part by a grant from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, No. 1 P30 AR-050953 for microscopic imaging services; the Kansas Lipidomics Research Center for lipid analyses (supported by NSF grants MCB 0455318 and DBI 0521587, NSF EPSCoR grant EPS-0236913 with matching support from the State of Kansas through Kansas Technology Enterprise Corporation and Kansas State University, and NIH Grant P20 RR16475 from the INBRE program of the National Center for Research Resources); and the Molecular Biology Proteomics Facility at the University of Oklahoma Health Sciences Center for amino acid and amino sugar analyses. We are also grateful to Dr. Matt R. Allen, Assistant Professor in the Department of Anatomy & Cell Biology at the Indiana University School of Medicine, for providing high resolution (3-μm) micro-computed tomography images of our bone wafers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Midura.

Additional information

Demin Wen and Caroline Androjna contributed equally as first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, D., Androjna, C., Vasanji, A. et al. Lipids and Collagen Matrix Restrict the Hydraulic Permeability Within the Porous Compartment of Adult Cortical Bone. Ann Biomed Eng 38, 558–569 (2010). https://doi.org/10.1007/s10439-009-9858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9858-z

Keywords

Navigation