Skip to main content
Log in

Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. American Heart Association: Statistical Reference Book, Texas, 2005.

  2. Bachmann, C., G. Hugo, G. Rosenberg, S. Deutsch, A. Fontaine, and J. M. Tarbell. Fluid dynamics of a pediatric ventricular assist device. Artif. Organs 25:362–372, 2000.

    Article  Google Scholar 

  3. Baldwin, J. T., H. S. Borovetz, B. W. Duncan, M. J. Gartner, R. K. Jarvik, W. J. Weiss, and T. R. Hoke. The national heart, lung, and blood institute pediatric circulatory support program. Circulation 113:147–155, 2006.

    Article  PubMed  Google Scholar 

  4. Baldwin, J. T., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. LDA measurements of mean velocity and reynolds stress fields within an artificial heart ventricle. J. Biomech. Eng. 116:190–200, 1994.

    Article  CAS  PubMed  Google Scholar 

  5. Beghetti, M., and P. C. Rimensberger. Mechanical circulatory support in pediatric patients. Intensive Care Med. 26:350–352, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Black, M. D., J. G. Coles, W. G. Williams, I. M. Rebeyka, G. A. Trusler, D. Bohn, C. Gruenweld, and R. M. Freedom. Determinants of successes in pediatric cardiac patients undergoing extracorporeal membrane oxygenation. Ann. Thorac. Surg. 60:133–138, 1995.

    CAS  PubMed  Google Scholar 

  7. Cochrane, T., C. J. Kenyon, P. V. Lawford, M. M. Black, J. B. Chambers, and D. C. Springings. Validation of the orifice formula for estimating effective heart valve opening area. Clin. Phys. Physiol. Meas. 12:21–37, 1990.

    Article  Google Scholar 

  8. Cooper, B. T., B. N. Roszelle, T. Long, S. Deutsch, and K. B. Manning. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection. J. Biomech. Eng. 130:041019-1–041019-13, 2008.

    Google Scholar 

  9. Daily, B. B., T. W. Pettitt, P. S. Salvatore, and W. S. Pierce. Pierce-Donachy pediatric VAD: progress in development. Ann. Thorac. Surg. 61:437–443, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Deutsch, S., J. M. Tarbell, K. B. Manning, G. Rosenberg, and A. Fontaine. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38:65–86, 2006.

    Article  Google Scholar 

  11. Hart, D. P. Super-resolution PIV processing by recursive local-correlation. J. Vis. 10:187–194, 1999.

    Google Scholar 

  12. Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation. Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1996–2005. Rockville, MD, 2005.

  13. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Correlation of in vivo clot deposition with the flow characteristics in the 50 cc Penn State artificial heart: a preliminary study. ASAIO J. 50:537–542, 2004.

    Article  PubMed  Google Scholar 

  14. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:430–437, 2004.

    Article  PubMed  Google Scholar 

  15. Hubbell, J. A., and L. V. McIntire. Visualization and analysis of mural thrombogenesis on collage, polyurethane and nylon. Biomaterials 7:354–363, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Karl, T. R., and B. Horton. Options for mechanical support in pediatric patients. In: Cardiac Assist Devices, edited by D. J. Goldstein and M. C. Oz. New York: Futurea Publishing Co, 2005, pp. 37–62.

  17. Kreider, J. W., K. B. Manning, L. A. Oley, A. A. Fontaine, and S. Deutsch. The 50 cc Penn State left ventricular assist device: a parametric study of valve orientation flow dynamics. ASAIO J. 52:123–131, 2006.

    Article  PubMed  Google Scholar 

  18. Lawson, N. J., and J. Wu. Three-dimensional particle image velocimetry: error analysis of stereoscopic techniques. Meas. Sci. Technol. 8:894–900, 1997.

    Article  CAS  Google Scholar 

  19. Long, J. A., A. Undar, K. B. Manning, and S. Deutsch. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. ASAIO J. 51:563–566, 2005.

    Article  PubMed  Google Scholar 

  20. Lukic, B., C. M. Zapanta, K. A. Griffith, and W. J. Weiss. Effect of the diastolic and systolic duration on valve cavitation in a pediatric pulsatile ventricular assist device. ASAIO J. 51:546–550, 2005.

    Article  PubMed  Google Scholar 

  21. Manning, K. B., B. D. Wivholm, N. Yang, A. A. Fontaine, and S. Deutsch. Flow behavior within the Penn State 12 cc pulsatile pediatric ventricular assist device: an experimental study of the initial design. Artif. Organs 32:442–452, 2008.

    Article  PubMed  Google Scholar 

  22. Prasad, A. K., and K. Jensen. Scheimpflug stereocamera for particle image velocimetry in liquid flows. Appl. Opt. 34:7092–7099, 1995.

    Article  Google Scholar 

  23. Rosenberg, G., W. M. Phillips, D. Landis, and W. S. Pierce. Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO J. 4:41–49, 1981.

    Google Scholar 

  24. Roszelle, B. N., B. T. Cooper, T. C. Long, S. Deutsch, and K. B. Manning. Penn state 12 cc pulsatile pediatric ventricular assist device: flow field observations at a reduced beat rate with application to weaning. ASAIO J. 54:325–331, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by NIH NHLBI Grant HV 48191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roszelle, B.N., Deutsch, S. & Manning, K.B. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device. Ann Biomed Eng 38, 439–455 (2010). https://doi.org/10.1007/s10439-009-9842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9842-7

Keywords

Navigation