Skip to main content
Log in

Synthetic Materials in the Study of Cell Response to Substrate Rigidity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While it has long been understood that cells can sense and respond to a variety of stimuli, including soluble and insoluble factors, light, and externally applied mechanical stresses, the extent to which cells can sense and respond to the mechanical properties of their environment has only recently begun to be studied. Cell response to substrate stiffness has been suggested to play an important role in processes ranging from developmental morphogenesis to the pathogenesis of disease states and may have profound implications for cell and tissue culture and tissue engineering. Given the importance of this phenomenon, there is a clear need for systems for cell study in which substrate mechanics can be carefully defined and varied independently of biochemical and other signals. This review will highlight past work in the field of cell response to substrate rigidity as well as areas for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Abe, H., K. Hayashi, and M. Sato. Data book on mechanical properties of living cells, tissues, and organs. Tokyo: Springer-Verlag, p. 436, 1996.

    Google Scholar 

  2. An, K. N., Y. L. Sun, and Z. P. Luo. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41:239–246, 2004.

    CAS  PubMed  Google Scholar 

  3. Balgude, A. P., X. Yu, A. Szymanski, and R. V. Bellamkonda. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Ze’ev, A., G. S. Robinson, N. L. Bucher, and S. R. Farmer. Cell–cell and cell–matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc. Natl Acad. Sci. USA 85:2161–2165, 1988.

    Article  PubMed  Google Scholar 

  5. Beningo, K. A., M. Dembo, and Y. L. Wang. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl Acad. Sci. USA 101:18024–18029, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Boonen, K. J., K. Y. Rosaria-Chak, F. P. Baaijens, D. W. van der Schaft, and M. J. Post. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell. Physiol. 296:C1338–C1345, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Boontheekul, T., E. E. Hill, H. J. Kong, and D. J. Mooney. Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng. 13:1431–1442, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Bryant, S. J., R. J. Bender, K. L. Durand, and K. S. Anseth. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Bryant, S. J., T. T. Chowdhury, D. A. Lee, D. L. Bader, and K. S. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.

    Article  PubMed  Google Scholar 

  11. Burton, K., and D. L. Taylor. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454, 1997.

    Article  CAS  PubMed  Google Scholar 

  12. Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.

    Article  Google Scholar 

  13. Chen, Q., S. I. Ringleb, A. Manduca, R. L. Ehman, and K. N. An. A finite element model for analyzing shear wave propagation observed in magnetic resonance elastography. J. Biomech. 38:2198–2203, 2005.

    Article  PubMed  Google Scholar 

  14. Collin, O., P. Tracqui, A. Stephanou, Y. Usson, J. Clement-Lacroix, and E. Planus. Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J. Cell Sci. 119:1914–1925, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Deroanne, C. F., C. M. Lapiere, and B. V. Nusgens. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49:647–658, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Engler, A., L. Richert, J. Y. Wong, C. Picart, and D. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.

    Article  CAS  Google Scholar 

  19. Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166:877–887, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.

    Article  PubMed  Google Scholar 

  23. Georges, P. C., W. J. Miller, D. F. Meaney, E. S. Sawyer, and P. A. Janmey. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90:3012–3018, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh, K., Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28:671–679, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Gomez, M. A. and A. M. Nahum. Biomechanics of bone. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 206–227.

    Google Scholar 

  26. Gray, D. S., J. Tien, and C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66:605–614, 2003.

    Article  PubMed  Google Scholar 

  27. Gunn, J. W., S. D. Turner, and B. K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. A 72:91–97, 2005.

    Article  PubMed  Google Scholar 

  28. Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Haut, R. C. Biomechanics of soft tissue. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 228–253.

    Google Scholar 

  30. Hsiong, S. X., P. Carampin, H. J. Kong, K. Y. Lee, and D. J. Mooney. Differentiation stage alters matrix control of stem cells. J. Biomed. Mater. Res. A 85:145–156, 2008.

    PubMed  Google Scholar 

  31. Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116:1397–1408, 2003.

    Article  CAS  PubMed  Google Scholar 

  32. Ingber, D. E. Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50:255–266, 2006.

    Article  PubMed  Google Scholar 

  33. Ingber, D. E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.

    Article  CAS  PubMed  Google Scholar 

  34. Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95:3479–3487, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, F. X., B. Yurke, B. L. Firestein, and N. A. Langrana. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565–1579, 2008.

    Article  PubMed  Google Scholar 

  36. Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90:1804–1809, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Khatiwala, C. B., P. D. Kim, S. R. Peyton, and A. J. Putnam. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24:886–898, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Khatiwala, C. B., S. R. Peyton, and A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell. Physiol. 290:C1640–C1650, 2006.

    Article  CAS  PubMed  Google Scholar 

  39. Kong, H. J., T. R. Polte, E. Alsberg, and D. J. Mooney. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA 102:4300–4305, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Kostic, A., C. D. Lynch, and M. P. Sheetz. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One 4:e6361, 2009.

    Article  PubMed  Google Scholar 

  41. Leach, J. B., X. Q. Brown, J. G. Jacot, P. A. Dimilla, and J. Y. Wong. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26–34, 2007.

    Article  PubMed  Google Scholar 

  42. Lee, E. Y., G. Parry, and M. J. Bissell. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155, 1984.

    Article  CAS  PubMed  Google Scholar 

  43. Li, M. L., J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl Acad. Sci. USA 84:136–140, 1987.

    Article  CAS  PubMed  Google Scholar 

  44. Li, Z., J. A. Dranoff, E. P. Chan, M. Uemura, J. Sevigny, and R. G. Wells. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 46:1246–1256, 2007.

    Article  CAS  PubMed  Google Scholar 

  45. Lin, Y. C., and F. Grinnell. Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices. J. Cell Biol. 122:663–672, 1993.

    Article  CAS  PubMed  Google Scholar 

  46. Lindblad, W. J., E. G. Schuetz, K. S. Redford, and P. S. Guzelian. Hepatocellular phenotype in vitro is influenced by biophysical features of the collagenous substratum. Hepatology 13:282–288, 1991.

    CAS  PubMed  Google Scholar 

  47. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  CAS  PubMed  Google Scholar 

  48. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    Article  CAS  PubMed  Google Scholar 

  49. Mih, J. D., and D. J. Tschumperlin. Lung fibroblast behavior is tuned by substrate stiffness. Proc. Am. Thorac. Soc. 5:364–365, 2008.

    Google Scholar 

  50. Oakes, P. W., D. C. Patel, N. A. Morin, D. P. Zitterbart, B. Fabry, J. S. Reichner, and J. X. Tang. Neutrophil morphology and migration are affected by substrate elasticity. Blood 114:1387–1395, 2009.

    Article  CAS  PubMed  Google Scholar 

  51. Oster, G. F., J. D. Murray, and A. K. Harris. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78:83–125, 1983.

    CAS  PubMed  Google Scholar 

  52. Park, Y., M. P. Lutolf, J. A. Hubbell, E. B. Hunziker, and M. Wong. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 10:515–522, 2004.

    Article  CAS  PubMed  Google Scholar 

  53. Paszek, M. J., and V. M. Weaver. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9:325–342, 2004.

    Article  PubMed  Google Scholar 

  54. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  CAS  PubMed  Google Scholar 

  55. Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Pellegrin, S., and H. Mellor. Actin stress fibres. J. Cell Sci. 120:3491–3499, 2007.

    Article  CAS  PubMed  Google Scholar 

  57. Peyton, S. R., P. D. Kim, C. M. Ghajar, D. Seliktar, and A. J. Putnam. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607, 2008.

    Article  CAS  PubMed  Google Scholar 

  58. Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204:198–209, 2005.

    Article  CAS  PubMed  Google Scholar 

  59. Peyton, S. R., C. B. Raub, V. P. Keschrumrus, and A. J. Putnam. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893, 2006.

    Article  CAS  PubMed  Google Scholar 

  60. Polte, T. R., G. S. Eichler, N. Wang, and D. E. Ingber. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell. Physiol. 286:C518–C528, 2004.

    Article  CAS  PubMed  Google Scholar 

  61. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.

    Article  CAS  PubMed  Google Scholar 

  62. Rowlands, A. S., P. A. George, and J. J. Cooper-White. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell. Physiol. 295:C1037–C1044, 2008.

    Article  CAS  PubMed  Google Scholar 

  63. Saez, A., M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104:8281–8286, 2007.

    Article  CAS  PubMed  Google Scholar 

  64. Saha, K., A. Keung, E. Irwin, Y. Li, L. Little, D. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.

    Article  CAS  PubMed  Google Scholar 

  65. Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.

    Article  PubMed  Google Scholar 

  66. Schlaepfer, D. D., S. K. Mitra, and D. Ilic. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692:77–102, 2004.

    CAS  PubMed  Google Scholar 

  67. Semler, E. J., P. A. Lancin, A. Dasgupta, and P. V. Moghe. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng. 89:296–307, 2005.

    Article  CAS  PubMed  Google Scholar 

  68. Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long Term Eff. Med. Implants 2:165–198, 1992.

    CAS  PubMed  Google Scholar 

  69. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.

    Article  CAS  PubMed  Google Scholar 

  70. Stichel, C. C., and H. W. Muller. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res. 294:1–9, 1998.

    Article  CAS  PubMed  Google Scholar 

  71. Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskeleton 66:328–341, 2009.

    Article  CAS  PubMed  Google Scholar 

  72. Teixeira, A. I., S. Ilkhanizadeh, J. A. Wigenius, J. K. Duckworth, O. Inganas, and O. Hermanson. The promotion of neuronal maturation on soft substrates. Biomaterials 30:4567–4572, 2009.

    Article  CAS  PubMed  Google Scholar 

  73. Tzvetkova-Chevolleau, T., A. Stephanou, D. Fuard, J. Ohayon, P. Schiavone, and P. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551, 2008.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98:11295–11300, 2001.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell. Physiol. 279:C1345–C1350, 2000.

    CAS  PubMed  Google Scholar 

  76. Wong, J. Y., A. Velasco, P. Rajagopalan, and Q. Pham. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913, 2003.

    Article  CAS  Google Scholar 

  77. Yeh, W. C., P. C. Li, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and P. H. Lee. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28:467–474, 2002.

    Article  PubMed  Google Scholar 

  78. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.

    Article  PubMed  Google Scholar 

  79. Yu, X., and R. V. Bellamkonda. Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J. Neurosci. Res. 66:303–310, 2001.

    Article  CAS  PubMed  Google Scholar 

  80. Zaari, N., P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 16:2133–2137, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West.

Appendix

Appendix

Conversion of shear modulus to elastic modulus:

$$ E = 2(1 + \upsilon )G, $$

where G = shear modulus, E = elastic or Young’s modulus, and υ = Poisson’s ratio (material-dependent).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemir, S., West, J.L. Synthetic Materials in the Study of Cell Response to Substrate Rigidity. Ann Biomed Eng 38, 2–20 (2010). https://doi.org/10.1007/s10439-009-9811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9811-1

Keywords

Navigation