Skip to main content

Advertisement

Log in

Development of Personalized Annuloplasty Rings: Combination of CT Images and CAD-CAM Tools

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although the use of personalized annuloplasty rings manufactured for each patient according to the size and morphology of their valve complex could be beneficial for the treatment of mitral insufficiency, this possibility has been limited for reasons of timelines and costs as well as for design and manufacturing difficulties, as has been the case with other personalized implant and prosthetic developments. However, the present quality of medical image capture equipment together with the benefits to be had from computer-aided design and manufacturing technologies (CAD-CAM) and the capabilities furnished by rapid prototyping technologies, present new opportunities for a personalized response to the development of implants and prostheses, the social impact of which could turn out to be highly positive. This paper sets out a personalized development of an annuloplasty ring based on the combined use of information from medical imaging, from CAD-CAM design programs and prototype manufacture using rapid prototyping technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Binder, T., et al. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J. Am. Coll. Cardiol. 35:230–237, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Carpentier, A. Cardiac valve surgery—the French correction. J. Thorac. Cardiovasc. Surg. 86(3):323–337, 1983.

    CAS  PubMed  Google Scholar 

  3. Chee, T., R. Hasto, et al. Is a flexible mitral annuloplasty ring superior to a semi-rigid or rigid ring in terms of improvement in symptoms and survival? Interact. CardioVasc. Thorac. Surg. 7:477–484, 2008.

    Article  PubMed  Google Scholar 

  4. Chiam, P., R. Del Valle-Fernández, and C. Ruiz. Terapéutica Valvular Percutánea. Rev. Esp. Cardiol. 61:10–24, 2008.

    PubMed  Google Scholar 

  5. Cormack, A. M. Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 35:2908–2913, 1964.

    Article  Google Scholar 

  6. Dall’Agata, A., A. Meindert, et al. Cosgrove-Edwards mitral ring dynamics measured with transesophageal three-dimensional echocardiography. Ann. Thorac. Surg. 65(2):485–490, 1998.

    Article  PubMed  Google Scholar 

  7. Díaz Lantada, A., P. Lafont, et al. Treatment of mitral valve insufficiency by shape-memory polymer based active annuloplasty. Biodevices 2008—International Conference on Biomedical Electronics and Devices, Vol. 1. INSTICC Press, 2008, pp. 17–22.

  8. Díaz Rubio, M., and D. Espinós. Tratado de Medicina Interna (1st ed.). Madrid: Editorial Médica Panamericana, 1994.

    Google Scholar 

  9. DICOM Standard—Digital Imaging and Communications in Medicine. Strategic document available from http://medical.nema.org.

  10. Dieter, R. S. Percutaneous valve repair: update on mitral regurgitation and endovascular approaches to the mitral valve. Applications in Imaging, Cardiac Interventions. Supported by an educational grant from Amersham Health, 2003, pp. 11–14.

  11. Duran, C. M. G. Duran Flexible Annuloplasty Repair of the Mitral and Tricuspid Valves: Indications, Patient Selection, and Surgical Techniques Using the Duran Flexible Annuloplasty Ring. Medtronic Inc., 1992.

  12. Flameng, W., et al. Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation 107:1609, 2003.

    Article  PubMed  Google Scholar 

  13. Freitag, D., and T. Wohlers. Rapid Prototyping: State of the Art. Chicago, IL: Manufacturing Technology Information Analysis Centre, 2003.

  14. Gillinov, A. M., D. M. Cosgrove, et al. Mitral valve repair. In: Cardiac Surgery in the Adult, edited by L. H. Cohn and L. H. Edmunds, Jr. New York: McGraw-Hill, 2003, pp. 933–950.

    Google Scholar 

  15. Gilon, D., et al. Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: three-dimensional echocardiographic stereolithography and patient studies. J. Am. Coll. Cardiol. 40(8):1479–1486, 2002.

    Article  PubMed  Google Scholar 

  16. Gómez-Durán, C. Estado Actual de la Cirugía Mitral Reconstructiva. Rev. Esp. Cardiol. 57:39–46, 2004.

    Article  PubMed  Google Scholar 

  17. Harrysson, O., et al. Custom-designed orthopaedic implants evaluated using FEM analysis of patient computed tomography data. BMC Musculoskelet. Disord. 8:91, 2007.

    Article  PubMed  Google Scholar 

  18. Hernández, J. M., et al. Manual de Cardiología Intervencionista. Sociedad Española de Cardiología. Sección de Hemodinámica y Cardiología Intervencionista, 2005.

  19. Hieu, L. C., et al. Design and manufacturing of personalized implants and standardized templates for cranioplasty applications. Ind. Technol. 2(11–14):1025–1030, 2002 (IEEE ICIT ‘02).

    Google Scholar 

  20. Hounsfield, G. N. Computerized transverse axial scanning (tomography): part 1. Description of system. Br. J. Radiol. 46:1016–1022, 1973.

    Article  CAS  PubMed  Google Scholar 

  21. Kaye, D., et al. Feasibility and short-term efficacy of percutaneous mitral annular reduction for the therapy of heart failure-induced mitral regurgitation. Circulation 108:1795, 2003.

    Article  PubMed  Google Scholar 

  22. Kim, M., et al. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117:2388–2394, 2008.

    Article  PubMed  Google Scholar 

  23. Kucklick, T. R. The Medical Device R&D Handbook (1st ed.). Boca Raton: CRC Press, 2006.

    Google Scholar 

  24. Lafont, P., A. Díaz Lantada, et al. Documento de Patente P200603149: Sistema activo de anuloplastia para tratamiento de la insuficiencia mitral y otras patologías cardiovasculares. Oficina Española de Patentes y Marcas, 2006.

  25. Lafont, P., A. Díaz Lantada, et al. Patent document WO/2008/071817: active annuloplasty system for the progressive treatment of valvular insufficiencies and other cardiovascular pathologies. World Intellectual Property Organization—International Bureau, 2008.

  26. Lafont, P., H. Lorenzo, et al. Rapid tooling: Moldes Rápidos a Partir de Estereolitografía. Revista de Plásticos Modernos. 79(524):150–156, 2000.

    Google Scholar 

  27. Leta, R., et al. Coronariografía no invasiva mediante tomografía computarizada con 16 detectores: estudio comparativo con la angiografía coronaria invasiva. Rev. Esp. Cardiol. 57(3):217–224, 2004.

    Article  PubMed  Google Scholar 

  28. Louis, A. K. Medical imaging: state of the art and future development. Inverse Problems 8:709–738, 1992.

    Article  Google Scholar 

  29. Medical Imaging and Technology Alliance, information available from http://www.medicalimaging.org.

  30. Mottl-Link, S., et al. Physical models aiding in complex congenital heart surgery. The Society of Thoracic Surgeons—Elsevier Inc. Ann. Thorac. Surg. 86:273–277, 2008.

    Article  PubMed  Google Scholar 

  31. Narula, J. State of the art of medical imaging: from molecule to function in heart failure. Circ. J. 69(1):25, 2005.

    Google Scholar 

  32. NEMA—The Association of Electrical and Medical Imaging Equipment Manufacturers, information available from http://www.nema.org.

  33. Ohnesorge, B. M., et al. Multi-Slice CT in Cardiac Imaging (1st ed.). New York: Springer-Verlag, pp. 15–59, 2002.

    Google Scholar 

  34. Okada, Y., et al. Comparison of the Carpentier and Duran prosthetic rings used in mitral reconstruction. Ann. Thorac. Surg. 59:658–662, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Porth, C. Fisiopatología. Salud – Enfermedad: Un Enfoque Conceptual. Trastornos de la función cardiaca (7th ed.). Madrid: Editorial Médica Panamericana, pp. 535–579, 2007.

    Google Scholar 

  36. Salgueiredo, E., et al. Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applications. Diamond Relat. Mater. 17(4–5):878–881, 2008.

    Article  CAS  Google Scholar 

  37. Santos da Rosa, E., et al. Rapid prototyping in maxillofacial surgery and traumatology: case report. Braz. Dent. J. 15(3):243–247, 2004.

    Google Scholar 

  38. Schwarz, M. New Materials Processes, and Methods Technology (1st ed.). Boca Raton: CRC Press, 2005.

    Google Scholar 

  39. Sharony, R., P. Saunders, et al. Semirigid partial annuloplasty band allows dynamic mitral annular motion and minimizes valvular gradients: an echocardiographic study. Ann. Thorac. Surg. 77(2):518–522, 2004.

    Article  PubMed  Google Scholar 

  40. Sodian, R., et al. Stereolithographic models for surgical planning in congenital heart surgery. The Society of Thoracic Surgeons—Elsevier Inc. Ann. Thorac. Surg. 83:1854–1857, 2007.

    Article  PubMed  Google Scholar 

  41. St. Goar, F., et al. Endovascular edge-to-edge mitral valve repair: short-term results in a porcine model. Circulation 108:1990–1993, 2003.

    Article  PubMed  Google Scholar 

  42. Winder, J., and R. Bibb. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 63:1006–1015, 2005.

    Article  PubMed  Google Scholar 

  43. Yamaura, Y., et al. Three-dimensional echocardiographic evaluation of configuration and dynamics of the mitral annulus in patients fitted with an annuloplasty ring. J. Heart Valve Dis. 6:43, 1997.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Raquel Del Valle-Fernández for the help provided with the acquisition and interpretation of images with cardiac CT and for the explanations related to limiting the influence of heart movement during the imaging processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz Lantada, A., Valle-Fernández, R.D., Morgado, P.L. et al. Development of Personalized Annuloplasty Rings: Combination of CT Images and CAD-CAM Tools. Ann Biomed Eng 38, 280–290 (2010). https://doi.org/10.1007/s10439-009-9805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9805-z

Keywords

Navigation