Advertisement

Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2317–2325 | Cite as

Characterization of Cell Mechanical Properties by Computational Modeling of Parallel Plate Compression

  • J. P. McGarry
Article

Abstract

A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

Keywords

Cell compression Computational analysis Viscoelastic Poisson’s ratio Cytoplasm stiffening 

Notes

Acknowledgments

The author would like to thank Prof. K.A. Athanasiou, Dr. G. Ofek and Prof. P.E. McHugh for insightful discussions. Funding was provided in part by the Science Foundation Ireland Research Frontiers Programme (SFI-RFP/ENM1726), and in part by an Irish Council for Science Engineering and Technology (IRCSET) Postdoctoral Fellowship.

References

  1. 1.
    Baaijens, F. P. T., W. R. Trickey, T. A. Laursen, and F. Guilak. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann. Biomed. Eng. 33:494–501, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Bausch, A., W. Möller, and E. Sackmann. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–579, 1999.PubMedCrossRefGoogle Scholar
  3. 3.
    Bausch, A., F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75:2038–2049, 1998.PubMedCrossRefGoogle Scholar
  4. 4.
    Caille, N., O. Thoumine, Y. Tardy, and J.-J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177–187, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Dahl, K., A. Engler, J. Pajerowski, and D. Discher. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89:2855–2864, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Darling, E., M. Topel, S. Zauscher, T. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41:454–464, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Deshpande, V., R. McMeeking, and A. Evans. A bio-chemo-mechanical model for cell contractility. Proc. Natl Acad. Sci. 103:14015, 2006.PubMedCrossRefGoogle Scholar
  8. 8.
    Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1541, 1995.PubMedCrossRefGoogle Scholar
  9. 9.
    Guilak, F., G. R. Erickson, and H. P. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82:720–727, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayashi, K. Tensile properties and local stiffness of cells. In: Mechanics of Biological Tissue, edited by G. A. Holzapfel, and R. W. Ogden. Springer-Verlag, 2006, pp. 137–152.Google Scholar
  11. 11.
    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang, W., B. Anvari, J. Torres, R. Lebaron, and K. Athanasiou. Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J. Orthop. Res. 21:88–95.Google Scholar
  13. 13.
    Icard-Arcizet, D., O. Cardoso, A. Richert, and S. Henon. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys. J. 94:2906–2913, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125:334–341, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Kole, T., Y. Tseng, I. Jiang, J. Katz, and D. Wirtz. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16:328–338, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Leipzig, N., and K. Athanasiou. Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys. J. 94:2412–2422, 2008.PubMedCrossRefGoogle Scholar
  18. 18.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.PubMedCrossRefGoogle Scholar
  19. 19.
    McGarry, J. P., J. Fu, M. T. Yang, C. S. Chen, R. M. McMeeking, A. G. Evans, and V. S. Deshpande. Simulation of the contractile response of cells on an array of micro-posts. Phil. Trans. R. Soc. A 367:3477–3497, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    McGarry, J. P., and P. E. McHugh. Modelling of in vitro chondrocyte detachment. J. Mech. Phys. Solids 56:1554–1565, 2008.CrossRefGoogle Scholar
  21. 21.
    McGarry, J. P., B. P. Murphy, and P. E. McHugh. Computational mechanics modelling of cell–substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids 53:2597–2637, 2005.CrossRefGoogle Scholar
  22. 22.
    Nguyen, V., Z. Zhang, C. Thomas, Q. G. Wang, N. Kuiper, and A. El Haj. Mechanical properties of single chondrocytes and chondrons determined by microcompression technique and numerical modelling. Trans. Orthop. Res. Soc. 34:323, 2009.Google Scholar
  23. 23.
    Ofek, G., D. C. Wiltz, and K. A. Athanasiou. Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys. J., 2009, accepted for publication.Google Scholar
  24. 24.
    Ofek, G., R. Natoli, and K. Athanasiou. In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech., 2009Google Scholar
  25. 25.
    Ohashi, T., Y. Ishii, Y. Ishikawa, T. Matsumoto, and M. Sato. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Biomed. Mater. Eng. 12:319–327, 2002.PubMedGoogle Scholar
  26. 26.
    Pathak, A., V. Deshpande, R. McMeeking, and A. Evans. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface 5:507–524, 2008.PubMedCrossRefGoogle Scholar
  27. 27.
    Peeters, E. A. G., C. V. C. Bouten, C. W. J. Oomens, D. L. Bader, L. H. E. H. Snoeckx, and F. P. T. Baaijens. Anisotropic, three-dimensional deformation of single attached cells under compression. Ann. Biomed. Eng. 32:1443–1452, 2004.PubMedCrossRefGoogle Scholar
  28. 28.
    Peeters, E. A. G., C. W. J. Oomens, C. V. C. Bouten, D. L. Bader, and F. P. T. Baaijens. Mechanical and failure properties of single attached cells under compression. J. Biomech. 38:1685–1693, 2005.PubMedCrossRefGoogle Scholar
  29. 29.
    Peeters, E. A. G., C. W. J. Oomens, C. V. C. Bouten, D. L. Bader, and F. P. T. Baaijens. Viscoelastic properties of single attached cells under compression. J. Biomech. Eng. 127:237–243, 2005.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelham, R. J., and Y.-L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Roca-Cusachs, P., J. Alcaraz, R. Sunyer, J. Samitier, R. Farre, and D. Navajas. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–4995, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Rowat, A., L. Foster, M. Nielsen, M. Weiss, and J. Ipsen. Characterization of the elastic properties of the nuclear envelope. J. R. Soc. Interface 2:63–69, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Shieh, A. C., and K. A. Athanasiou. Dynamic compression of single cells. Osteoarthritis Cartilage 15:328–334, 2007.PubMedCrossRefGoogle Scholar
  36. 36.
    Shiu, C., Z. Zhang, and C. R. Thomas. A novel technique for the study of bacterial cell mechanical properties. Biotechnol. Tech. 13:707–713, 1999.CrossRefGoogle Scholar
  37. 37.
    Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100:1484–1489, 2003.Google Scholar
  38. 38.
    Theret, D., M. Levesque, M. Sato, R. Nerem, and L. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110:190, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas, C., J. Collier, C. Sfeir, and K. Healy. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. 99:1972, 2002.PubMedCrossRefGoogle Scholar
  40. 40.
    Thoumine, O. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110:2109–2116, 1997.PubMedGoogle Scholar
  41. 41.
    Trickey, W., F. Baaijens, T. Laursen, L. Alexopoulos, and F. Guilak. Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39:78–87, 2006.PubMedCrossRefGoogle Scholar
  42. 42.
    Trickey, W., G. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898.Google Scholar
  43. 43.
    Trickey, W., T. Vail, and F. Guilak. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22:131–139, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Vaziri, A., H. Lee, and M. Kaazempur Mofrad. Deformation of the cell nucleus under indentation: mechanics and mechanisms. J. Mater. Res. 21:2126–2135, 2006.CrossRefGoogle Scholar
  45. 45.
    Vaziri, A., and M. Mofrad. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 40:2053–2062, 2007.PubMedCrossRefGoogle Scholar
  46. 46.
    Wakatsuki, T., B. Schwab, N. C. Thompson, and E. L. Elson. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 114:1025–1036, 2001.PubMedGoogle Scholar
  47. 47.
    Wakatsuki, T., R. Wysolmerski, and E. Elson. Mechanics of cell spreading: role of myosin II. J. Cell Sci. 116:1617–1625, 2003.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang, J., P. Goldschmidt-Clermont, J. Wille, and F. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572, 2001.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, Q. G., B. Nguyen, C. Thomas, A. El Haj, Z. Zhang, and N. Kuiper. The Relationship between mechanical forces and gene expression of single chondrocytes and chondrons. Trans. Orthop. Res. Soc. 34:297, 2009.Google Scholar
  50. 50.
    Yeung, T., P. Georges, L. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Biomedical Engineering, National Centre for Biomedical Engineering ScienceNational University of IrelandGalwayIreland

Personalised recommendations