Asanoi, H., T. Kameyama, S. Ishizaka, T. Nozawa, and H. Inoue. Energetically optimal left ventricular pressure for the failing human heart. Circulation 93(1):67–63, 1996.
PubMed
CAS
Google Scholar
Brooks, A. N., and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32:199–259, 1982.
Article
Google Scholar
Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26(10):2550–2559, 2005.
PubMed
Google Scholar
Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006.
Article
Google Scholar
Formaggia, L., J. F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7):561–582, 2001.
Article
Google Scholar
Formaggia, L., D. Lamponi, M. Tuveri, and A. Veneziani. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Meth. Biomech. Biomed. Eng. 9(5):273–288, 2006.
Article
Google Scholar
Franca, L. P., and S. L. Frey. Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99(2–3):209–233, 1992.
Article
Google Scholar
Heywood, J., R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22(5):325–352, 1996.
Article
Google Scholar
Hope, S. A., D. B. Tay, I. T. Meredith, and J. D. Cameron. Waveform dispersion, not reflection, may be the major determinant of aortic pressure wave morphology. Am. J. Physiol. Heart Circ. Physiol. 289(6):H2497–H2502, 2005.
PubMed
Article
CAS
Google Scholar
Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5(1):147–177, 2003.
PubMed
Article
CAS
Google Scholar
Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35(1):1–18, 2007.
PubMed
Article
Google Scholar
Kim, H. J., C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. (in press). doi:10.1016/j.cma.2009.02.012
Kirklin, J. W., and B. G. Barratt-Boyes. Cardiac Surgery: Morphology, Diagnostic Criteria, Natural History, Techniques, Results, and Indications, 2nd edition. New York: W.B. Saunders, 1993.
Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69(1):112–119, 1990.
PubMed
CAS
Google Scholar
Li, Z., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27(5):369–382, 2005.
PubMed
Article
Google Scholar
Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. H. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39(6):1010–1020, 2006.
PubMed
Article
Google Scholar
Ottesen, J. T., M. S. Olufsen, and J. K. Larsen. Applied Mathematical Models in Human Physiology. SIAM Monographs on Mathematical Modeling and Computation. Philadelphia: SIAM, 2004.
Perktold, K., R. Peter, and M. Resch. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26(6):1011–1030, 1989.
PubMed
CAS
Google Scholar
Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci., 4(2):111–124, 2001.
Article
Google Scholar
Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, 2006.
Article
Google Scholar
Sainte-Marie, J., D. Chapelle, R. Cimrman, and M. Sorine. Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84:1743–1759, 2006.
Article
Google Scholar
Seear, M., S. Webber, and J. Leblanc. Descending aortic blood flow velocity as a noninvasive measure of cardiac output in children. Pediatr. Cardiol. 15(4):178–183, 1994.
Article
Google Scholar
Segers, P., N. Stergiopulos, and N. Westerhof. Relation of effective arterial elastance to arterial system properties. Am. J. Physiol. Heart Circ. Physiol. 282(3):H1041–H1046, 2002.
PubMed
CAS
Google Scholar
Segers, P., N. Stergiopulos, N. Westerhof, P. Wouters, P. Kolh, and P. Verdonck. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J. Eng. Math. 47(3):185–199, 2003.
Article
Google Scholar
Senzaki, H., C. H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94(10):2497–2506, 1996.
PubMed
CAS
Google Scholar
Soerensen, D. D., K. Pekkan, D. de Zelicourt, S. Sharma, K. Kanter, M. Fogel, and A. P. Yoganathan. Introduction of a new optimized total cavopulmonary connection. Ann. Thorac. Surg. 83(6):2182–2190, 2007.
PubMed
Article
Google Scholar
Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2):H424–H428, 1999.
CAS
Google Scholar
Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126(3):382–387, 2004.
PubMed
Article
Google Scholar
Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35(1):117–126, 1974.
PubMed
CAS
Google Scholar
Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291(2):H668–H676, 2006.
PubMed
Article
CAS
Google Scholar
Taylor, C. A., and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36(1):197–231, 2004.
Article
Google Scholar
Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aid. Surg. 4(5):231–247, 1999.
Article
CAS
Google Scholar
Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1998.
Article
Google Scholar
Taylor, S. H., and K. W. Donald. Circulatory studies at rest and during exercise in coarctation of the aorta before and after operation. Br. Heart J. 22:117–139, 1960.
PubMed
Article
CAS
Google Scholar
Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.
Article
Google Scholar
Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35(1):93–116, 2001.
Article
CAS
Google Scholar
Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.
PubMed
Article
CAS
Google Scholar