Skip to main content

On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model

Abstract

Aortic flow and pressure result from the interactions between the heart and arterial system. In this work, we considered these interactions by utilizing a lumped parameter heart model as an inflow boundary condition for three-dimensional finite element simulations of aortic blood flow and vessel wall dynamics. The ventricular pressure–volume behavior of the lumped parameter heart model is approximated using a time varying elastance function scaled from a normalized elastance function. When the aortic valve is open, the coupled multidomain method is used to strongly couple the lumped parameter heart model and three-dimensional arterial models and compute ventricular volume, ventricular pressure, aortic flow, and aortic pressure. The shape of the velocity profiles of the inlet boundary and the outlet boundaries that experience retrograde flow are constrained to achieve a robust algorithm. When the aortic valve is closed, the inflow boundary condition is switched to a zero velocity Dirichlet condition. With this method, we obtain physiologically realistic aortic flow and pressure waveforms. We demonstrate this method in a patient-specific model of a normal human thoracic aorta under rest and exercise conditions and an aortic coarctation model under pre- and post-interventions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Asanoi, H., T. Kameyama, S. Ishizaka, T. Nozawa, and H. Inoue. Energetically optimal left ventricular pressure for the failing human heart. Circulation 93(1):67–63, 1996.

    PubMed  CAS  Google Scholar 

  2. Brooks, A. N., and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32:199–259, 1982.

    Article  Google Scholar 

  3. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26(10):2550–2559, 2005.

    PubMed  Google Scholar 

  4. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006.

    Article  Google Scholar 

  5. Formaggia, L., J. F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7):561–582, 2001.

    Article  Google Scholar 

  6. Formaggia, L., D. Lamponi, M. Tuveri, and A. Veneziani. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Meth. Biomech. Biomed. Eng. 9(5):273–288, 2006.

    Article  Google Scholar 

  7. Franca, L. P., and S. L. Frey. Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99(2–3):209–233, 1992.

    Article  Google Scholar 

  8. Heywood, J., R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22(5):325–352, 1996.

    Article  Google Scholar 

  9. Hope, S. A., D. B. Tay, I. T. Meredith, and J. D. Cameron. Waveform dispersion, not reflection, may be the major determinant of aortic pressure wave morphology. Am. J. Physiol. Heart Circ. Physiol. 289(6):H2497–H2502, 2005.

    PubMed  Article  CAS  Google Scholar 

  10. Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5(1):147–177, 2003.

    PubMed  Article  CAS  Google Scholar 

  11. Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35(1):1–18, 2007.

    PubMed  Article  Google Scholar 

  12. Kim, H. J., C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. (in press). doi:10.1016/j.cma.2009.02.012

  13. Kirklin, J. W., and B. G. Barratt-Boyes. Cardiac Surgery: Morphology, Diagnostic Criteria, Natural History, Techniques, Results, and Indications, 2nd edition. New York: W.B. Saunders, 1993.

  14. Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69(1):112–119, 1990.

    PubMed  CAS  Google Scholar 

  15. Li, Z., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27(5):369–382, 2005.

    PubMed  Article  Google Scholar 

  16. Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. H. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39(6):1010–1020, 2006.

    PubMed  Article  Google Scholar 

  17. Ottesen, J. T., M. S. Olufsen, and J. K. Larsen. Applied Mathematical Models in Human Physiology. SIAM Monographs on Mathematical Modeling and Computation. Philadelphia: SIAM, 2004.

  18. Perktold, K., R. Peter, and M. Resch. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26(6):1011–1030, 1989.

    PubMed  CAS  Google Scholar 

  19. Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci., 4(2):111–124, 2001.

    Article  Google Scholar 

  20. Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, 2006.

    Article  Google Scholar 

  21. Sainte-Marie, J., D. Chapelle, R. Cimrman, and M. Sorine. Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84:1743–1759, 2006.

    Article  Google Scholar 

  22. Seear, M., S. Webber, and J. Leblanc. Descending aortic blood flow velocity as a noninvasive measure of cardiac output in children. Pediatr. Cardiol. 15(4):178–183, 1994.

    Article  Google Scholar 

  23. Segers, P., N. Stergiopulos, and N. Westerhof. Relation of effective arterial elastance to arterial system properties. Am. J. Physiol. Heart Circ. Physiol. 282(3):H1041–H1046, 2002.

    PubMed  CAS  Google Scholar 

  24. Segers, P., N. Stergiopulos, N. Westerhof, P. Wouters, P. Kolh, and P. Verdonck. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J. Eng. Math. 47(3):185–199, 2003.

    Article  Google Scholar 

  25. Senzaki, H., C. H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94(10):2497–2506, 1996.

    PubMed  CAS  Google Scholar 

  26. Soerensen, D. D., K. Pekkan, D. de Zelicourt, S. Sharma, K. Kanter, M. Fogel, and A. P. Yoganathan. Introduction of a new optimized total cavopulmonary connection. Ann. Thorac. Surg. 83(6):2182–2190, 2007.

    PubMed  Article  Google Scholar 

  27. Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2):H424–H428, 1999.

    CAS  Google Scholar 

  28. Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126(3):382–387, 2004.

    PubMed  Article  Google Scholar 

  29. Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35(1):117–126, 1974.

    PubMed  CAS  Google Scholar 

  30. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291(2):H668–H676, 2006.

    PubMed  Article  CAS  Google Scholar 

  31. Taylor, C. A., and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36(1):197–231, 2004.

    Article  Google Scholar 

  32. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aid. Surg. 4(5):231–247, 1999.

    Article  CAS  Google Scholar 

  33. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1998.

    Article  Google Scholar 

  34. Taylor, S. H., and K. W. Donald. Circulatory studies at rest and during exercise in coarctation of the aorta before and after operation. Br. Heart J. 22:117–139, 1960.

    PubMed  Article  CAS  Google Scholar 

  35. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.

    Article  Google Scholar 

  36. Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35(1):93–116, 2001.

    Article  CAS  Google Scholar 

  37. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Hyun Jin Kim was supported by a Stanford Graduate Fellowship. This material is based upon work supported by the National Science Foundation under Grant No. 0205741. The authors gratefully acknowledge Dr. Nathan M. Wilson for assistance with software development. The authors gratefully acknowledge Dr. Farzin Shakib for the use of his linear algebra package AcuSolveTM (http://www.acusim.com) and the support of Simmetrix, Inc for the use of the MeshSimTM (http://www.simmetrix.com) mesh generator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Taylor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H.J., Vignon-Clementel, I.E., Figueroa, C.A. et al. On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model. Ann Biomed Eng 37, 2153–2169 (2009). https://doi.org/10.1007/s10439-009-9760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9760-8

Keywords

  • Blood flow
  • Time varying elastance function
  • Coupled multidomain method