Annals of Biomedical Engineering

, Volume 37, Issue 11, pp 2153–2169 | Cite as

On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model

  • H. J. Kim
  • I. E. Vignon-Clementel
  • C. A. Figueroa
  • J. F. LaDisa
  • K. E. Jansen
  • J. A. Feinstein
  • C. A. Taylor


Aortic flow and pressure result from the interactions between the heart and arterial system. In this work, we considered these interactions by utilizing a lumped parameter heart model as an inflow boundary condition for three-dimensional finite element simulations of aortic blood flow and vessel wall dynamics. The ventricular pressure–volume behavior of the lumped parameter heart model is approximated using a time varying elastance function scaled from a normalized elastance function. When the aortic valve is open, the coupled multidomain method is used to strongly couple the lumped parameter heart model and three-dimensional arterial models and compute ventricular volume, ventricular pressure, aortic flow, and aortic pressure. The shape of the velocity profiles of the inlet boundary and the outlet boundaries that experience retrograde flow are constrained to achieve a robust algorithm. When the aortic valve is closed, the inflow boundary condition is switched to a zero velocity Dirichlet condition. With this method, we obtain physiologically realistic aortic flow and pressure waveforms. We demonstrate this method in a patient-specific model of a normal human thoracic aorta under rest and exercise conditions and an aortic coarctation model under pre- and post-interventions.


Blood flow Time varying elastance function Coupled multidomain method 



Hyun Jin Kim was supported by a Stanford Graduate Fellowship. This material is based upon work supported by the National Science Foundation under Grant No. 0205741. The authors gratefully acknowledge Dr. Nathan M. Wilson for assistance with software development. The authors gratefully acknowledge Dr. Farzin Shakib for the use of his linear algebra package AcuSolveTM ( and the support of Simmetrix, Inc for the use of the MeshSimTM ( mesh generator.


  1. 1.
    Asanoi, H., T. Kameyama, S. Ishizaka, T. Nozawa, and H. Inoue. Energetically optimal left ventricular pressure for the failing human heart. Circulation 93(1):67–63, 1996.PubMedGoogle Scholar
  2. 2.
    Brooks, A. N., and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32:199–259, 1982.CrossRefGoogle Scholar
  3. 3.
    Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26(10):2550–2559, 2005.PubMedGoogle Scholar
  4. 4.
    Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006.CrossRefGoogle Scholar
  5. 5.
    Formaggia, L., J. F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7):561–582, 2001.CrossRefGoogle Scholar
  6. 6.
    Formaggia, L., D. Lamponi, M. Tuveri, and A. Veneziani. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Meth. Biomech. Biomed. Eng. 9(5):273–288, 2006.CrossRefGoogle Scholar
  7. 7.
    Franca, L. P., and S. L. Frey. Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99(2–3):209–233, 1992.CrossRefGoogle Scholar
  8. 8.
    Heywood, J., R. Rannacher, and S. Turek. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22(5):325–352, 1996.CrossRefGoogle Scholar
  9. 9.
    Hope, S. A., D. B. Tay, I. T. Meredith, and J. D. Cameron. Waveform dispersion, not reflection, may be the major determinant of aortic pressure wave morphology. Am. J. Physiol. Heart Circ. Physiol. 289(6):H2497–H2502, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5(1):147–177, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35(1):1–18, 2007.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, H. J., C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. (in press). doi: 10.1016/j.cma.2009.02.012
  13. 13.
    Kirklin, J. W., and B. G. Barratt-Boyes. Cardiac Surgery: Morphology, Diagnostic Criteria, Natural History, Techniques, Results, and Indications, 2nd edition. New York: W.B. Saunders, 1993.Google Scholar
  14. 14.
    Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69(1):112–119, 1990.PubMedGoogle Scholar
  15. 15.
    Li, Z., and C. Kleinstreuer. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27(5):369–382, 2005.PubMedCrossRefGoogle Scholar
  16. 16.
    Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. H. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39(6):1010–1020, 2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Ottesen, J. T., M. S. Olufsen, and J. K. Larsen. Applied Mathematical Models in Human Physiology. SIAM Monographs on Mathematical Modeling and Computation. Philadelphia: SIAM, 2004.Google Scholar
  18. 18.
    Perktold, K., R. Peter, and M. Resch. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26(6):1011–1030, 1989.PubMedGoogle Scholar
  19. 19.
    Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci., 4(2):111–124, 2001.CrossRefGoogle Scholar
  20. 20.
    Sahni, O., J. Muller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Methods Appl. Mech. Eng. 195(41–43):5634–5655, 2006.CrossRefGoogle Scholar
  21. 21.
    Sainte-Marie, J., D. Chapelle, R. Cimrman, and M. Sorine. Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84:1743–1759, 2006.CrossRefGoogle Scholar
  22. 22.
    Seear, M., S. Webber, and J. Leblanc. Descending aortic blood flow velocity as a noninvasive measure of cardiac output in children. Pediatr. Cardiol. 15(4):178–183, 1994.CrossRefGoogle Scholar
  23. 23.
    Segers, P., N. Stergiopulos, and N. Westerhof. Relation of effective arterial elastance to arterial system properties. Am. J. Physiol. Heart Circ. Physiol. 282(3):H1041–H1046, 2002.PubMedGoogle Scholar
  24. 24.
    Segers, P., N. Stergiopulos, N. Westerhof, P. Wouters, P. Kolh, and P. Verdonck. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J. Eng. Math. 47(3):185–199, 2003.CrossRefGoogle Scholar
  25. 25.
    Senzaki, H., C. H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94(10):2497–2506, 1996.PubMedGoogle Scholar
  26. 26.
    Soerensen, D. D., K. Pekkan, D. de Zelicourt, S. Sharma, K. Kanter, M. Fogel, and A. P. Yoganathan. Introduction of a new optimized total cavopulmonary connection. Ann. Thorac. Surg. 83(6):2182–2190, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2):H424–H428, 1999.Google Scholar
  28. 28.
    Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126(3):382–387, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35(1):117–126, 1974.PubMedGoogle Scholar
  30. 30.
    Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291(2):H668–H676, 2006.PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor, C. A., and M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36(1):197–231, 2004.CrossRefGoogle Scholar
  32. 32.
    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aid. Surg. 4(5):231–247, 1999.CrossRefGoogle Scholar
  33. 33.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1998.CrossRefGoogle Scholar
  34. 34.
    Taylor, S. H., and K. W. Donald. Circulatory studies at rest and during exercise in coarctation of the aorta before and after operation. Br. Heart J. 22:117–139, 1960.PubMedCrossRefGoogle Scholar
  35. 35.
    Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.CrossRefGoogle Scholar
  36. 36.
    Whiting, C. H., and K. E. Jansen. A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35(1):93–116, 2001.CrossRefGoogle Scholar
  37. 37.
    Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • H. J. Kim
    • 1
  • I. E. Vignon-Clementel
    • 2
  • C. A. Figueroa
    • 3
  • J. F. LaDisa
    • 4
  • K. E. Jansen
    • 5
  • J. A. Feinstein
    • 3
    • 6
  • C. A. Taylor
    • 3
    • 6
    • 7
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.INRIA, Paris-RocquencourtLe Chesnay CedexFrance
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA
  4. 4.Department of Biomedical EngineeringMarquette UniversityMilwaukeeUSA
  5. 5.Scientific Computation Research Center and the Department of Mechanical, Aeronautical and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  6. 6.Department of PediatricsStanford UniversityStanfordUSA
  7. 7.Department of SurgeryStanford UniversityStanfordUSA

Personalised recommendations