Skip to main content
Log in

Analysis of Surface Atrial Signals: Time Series with Missing Data?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Uncovering of the atrial signal for patients undergoing episodes of atrial fibrillation is usually obtained from surface ECG by removing waves induced by ventricular activities. Once earned the atrial signal, the detection of the dominant fibrillation frequency is often the main (and only) goal. In this work we verified if subtraction of the ventricular activity might be avoided by performing spectral analysis on those ECG segments where ventricular activity is absent, (i.e. the T-Q intervals). While the approach might seem crude, in here the question was recast into a problem of missing data in a long time series and proper methods were applied: the Lomb periodogram and the iterative Singular Spectrum Analysis. The two methods were tested on both simulated signals and “realistic” atrial signals constructed using the ECG recordings provided by the 2004 Computers in Cardiology competition. The results obtained showed that both techniques were able to provide a reliable quantification of the dominant oscillation, with a slightly superior performance of the iterative Singular Spectrum Analysis. Absolute errors larger than 1.0 Hz were unlikely (p < 0.05) up to 130−140 bpm. Such level of agreement is consistent with similar comparative works where techniques for separating the atrial signal from ventricular waves were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bollmann, A., D. Husser, L. Mainardi, F. Lombardi, P. Langley, A. Murray, J. Rieta, J. Millet, B. Olsson, M. Stridh, and L. Sörnmo. Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. Europace 8:911–926, 2006.

    Article  PubMed  Google Scholar 

  2. Bollmann, A., N. K. Kanuru, K. K. McTeague, P. F. Walter, D. B. DeLurgio, and J. J. Langberg. Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am. J. Cardiol. 81(12):1439–1445, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Bollmann, A., K. Sonne, H. D. Esperer, I. Toepffer, J. J. Langberg, and H. U Klein. Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the holter ecg. Cardiovasc. Res. 44(1):60–66, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Bollmann, A., K. Wodarz, H. D. Esperer, I. Toepffer, and H. U. Klein. Response of atrial fibrillatory activity to carotid sinus massage in patients with atrial fibrillation. Pacing Clin. Electrophysiol. 24(9 Pt 1):1363–1368, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Broomhead, D. S., and G. P. King. Extracting qualitative dynamics from experimental data. Physica D 20:217–236, 1986.

    Article  Google Scholar 

  6. Castells, F., P. Laguna, L. Sornmo, A. Bollmann, and J. Millet. Principal component analysis in ECG signal processing. EURASIP J. Adv. Signal Process. 2007:74580-21, 2007.

    Article  Google Scholar 

  7. Castells, F., R. Ruiz, J. J. Rieta, and J. Millet. An integral atrial wave identification based on spatiotemporal source separation: clinical validation. IEEE Comput. Cardiol. 30:717–720, 2003.

    Article  Google Scholar 

  8. Castiglioni, P., and M. Di Rienzo. On the evaluation of heart rate spectra: the lomb periodogram. IEEE Comput. Cardiol. 23:505–508, 1996.

    Google Scholar 

  9. Cerutti, S., G. Baselli, S. Civardi, E. Ferrazzi, G. Pardi, A. M. Marconi, and M. Pagani. Circadian modulation of atrial cycle length in human chronic permanent atrial fibrillation: a non-invasive assessment using long-term surface ecg. J. Perinat. Med. 14:445–452, 1986.

    Article  CAS  PubMed  Google Scholar 

  10. Clifford, G. D., and L. Tarassenko. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans. Biomed. Eng. 52:630–638, 2005.

    Article  PubMed  Google Scholar 

  11. Cosson, S., P. Maison-Blanche, S. Olsson, A. Leenhardt, F. Badilini, and P. Coumel. Circadian modulation of atrial cycle length in human chronic permanent atrial fibrillation: a non-invasive assessment using long-term surface ecg. Ann. Noninvasive Electrocardiol. 5:270–278, 2000.

    Article  Google Scholar 

  12. Fujiki, A., H. Nagasawa, M. Sakabe, K. Sakurai, K. Nishida, K. Mizumaki, and H. Inoue. Spectral characteristics of human atrial fibrillation waves of the right atrial free wall with respect to the duration of atrial fibrillation and effect of class i antiarrhythmic drugs. Jpn. Circ. J. 65(12):1047–1051, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Fujiki, A., M. Sakabe, K. Nishida, K. Mizumaki, and H. Inoue. Role of fibrillation cycle length in spontaneous and drug-induced termination of human atrial fibrillation. Circ. J. 67(5):391–395, 2003.

    Article  PubMed  Google Scholar 

  14. Holm, M., S. Pehrson, M. Ingemansson, L. Sornmo, R. Johansson, L. Sandhall, M. Sunemark, B. Smideberg, C. Olsson, and S. B. Olsson. Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovasc. Res. 38:69–81, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Ingemansson, M. P., M. Holm, and S.B. Olsson. Autonomic modulation of the atrial cycle length by the head up tilt test: non-invasive evaluation in patients with chronic atrial fibrillation. Heart 80(1):71–76, 1998.

    CAS  PubMed  Google Scholar 

  16. Kondrashov, D., Y. Feliks, and M. Ghil. Oscillatory modes of extended Nile River records (A.D. 622–1922). Geophys. Res. Lett. 32:L10702, 2005.

    Article  Google Scholar 

  17. Kondrashov, D., and M. Ghil. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process. Geophys. 13:151–159, 2006.

    Article  Google Scholar 

  18. Laguna, P., G. B. Moody, and R. G. Mark. Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 45:698–715, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Langley, P., J. J. Rieta, M. Stridh, J. Millet-Roig, L. Sornmo, and A. Murray. Reconstruction of atrial signals derived from the 12-lead ECG using atrial signal extraction techniques. IEEE Comput. Cardiol. 30:129–132, 2003.

    Article  Google Scholar 

  20. Langley, P., J. J. Rieta, M. Stridh, J. Millet, L. Sornmo, and A. Murray. Comparison of atrial signal extraction algorithms in 12-lead ECGs with atrial fibrillation. IEEE Trans. Biomed. Eng. 53:343–346, 2006.

    Article  PubMed  Google Scholar 

  21. Lemay, M., V. Jacquemet, A. Forclaz, J. M. Vesin, and L. Kappenberger. Spatiotemporal QRST cancellation method using separate QRS and T-waves templates. IEEE Comput. Cardiol. 32:611–614, 2005.

    Article  Google Scholar 

  22. Lian, J., D. Müssig, and V. Lang. Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing. IEEE Trans. Biomed. Eng. 53:1512–1520, 2006.

    Article  PubMed  Google Scholar 

  23. Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39:447–462, 1976.

    Article  Google Scholar 

  24. Mainardi, L. T., M. Matteucci, and R. Sassi. On predicting the spontaneous termination of atrial fibrillation episodes using linear and nonlinear parameters of ECG signal and RR series. IEEE Comput. Cardiol. 31:665–668, 2004.

    Article  Google Scholar 

  25. Mainardi, L., L. Sornmo, and S. Cerutti (eds.). Understanding Atrial Fibrillation: The Signal Processing Contribution. California: Morgan & Claypool Publisher, 2008.

    Google Scholar 

  26. Meurling, C. J., J. E. Waktare, F. Holmqvist, A. Hedman, A. J. Camm, S. B. Olsson, and M. Malik. Diurnal variations of the dominant cycle length of chronic atrial fibrillation. Am. J. Physiol. Heart Circ. Physiol. 280(1):H401–H406, 2001.

    CAS  PubMed  Google Scholar 

  27. Moody, G. B. Spectral analysis of heart rate without resampling. IEEE Comput. Cardiol. 20:715–718, 1993.

    Google Scholar 

  28. Moody, G. B. Spontaneous termination of atrial fibrillation: a challenge from physionet and computers in cardiology 2004. IEEE Comput. Cardiol. 31:101–104, 2004.

    Article  Google Scholar 

  29. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, 1992.

  30. Raine, D., P. Langley, A. Murray, A. Dunuwille, and J. P. Bourke. Surface atrial frequency analysis in patients with atrial fibrillation: a tool for evaluating the effects of intervention. J. Cardiovasc. Electrophysiol. 15:1021–1026, 2004.

    Article  PubMed  Google Scholar 

  31. Rieta, J. J., F. Castells, C. Sanchez, V. Zarzoso, and J. Millet. Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans. Biomed. Eng. 51:1176–1186, 2004.

    Article  PubMed  Google Scholar 

  32. Rosenbaum, D. S., and R. J. Cohen. Frequency based measures of atrial fibrillation in man. In: Engineering in Medicine and Biology Society, 1990. Proceedings of the Twelfth Annual International Conference of the IEEE, 1990, pp. 582–583.

  33. Scargle, J. D. Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263:835–853, 1982.

    Article  Google Scholar 

  34. Schoellhamer, D. H. Singular spectrum analysis for time series with missing data. Geophys. Res. Lett. 28:3187–3190, 2001.

    Article  Google Scholar 

  35. Slocum, J., A. Sahakian, and S. Swiryn. Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. J. Electrocardiol. 25:1–8, 1992.

    Article  CAS  PubMed  Google Scholar 

  36. Stridh, M., A. Bollmann, B. Olsson, and L. Sornmo. Detection and feature extraction of atrial tachyarrhythmias. IEEE Eng. Med. Biol. Mag. 25:31–39, 2006.

    Article  PubMed  Google Scholar 

  37. Stridh, M., and L. Sornmo. Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Trans. Biomed. Eng. 48:105–111, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Stridh, M., L. Sornmo, C. Meurling, and S. Olsson. Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis. IEEE Trans. Biomed. Eng. 51:100–114, 2004.

    Article  PubMed  Google Scholar 

  39. Tai, C., S. Chen, A. Liu, W. Yu, Y. Ding, M. Chang, and T. Kao. Spectral analysis of chronic atrial fibrillation and its relation to minimal defibrillation energy. Pacing Clin. Electrophysiol. 25:1747–1751, 2002.

    Article  PubMed  Google Scholar 

  40. Tateno, K., and L. Glass. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of rr and δ rr intervals. Med. Biol. Eng. Comput. 39:664–671, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Tironi, D. A., R. Sassi, and L. T. Mainardi. Automated QT interval analysis on diagnostic electrocardiograms. IEEE Comput. Cardiol. 33:353–356, 2006.

    Google Scholar 

  42. Vautard, R., and M. Ghil. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424, 1989.

    Article  Google Scholar 

  43. Vautard, R., P. Yiou, and M. Ghil. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassi, R., Corino, V.D.A. & Mainardi, L.T. Analysis of Surface Atrial Signals: Time Series with Missing Data?. Ann Biomed Eng 37, 2082–2092 (2009). https://doi.org/10.1007/s10439-009-9757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9757-3

Keywords

Navigation