Skip to main content
Log in

Effect of Extracellular Potassium Accumulation on Muscle Fiber Conduction Velocity: A Simulation Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A progressive reduction in muscle fiber conduction velocity is typically observed during fatiguing muscle contraction. Although the exact causes of the conduction velocity decrease have not yet been fully established, increasing evidence suggests that changes in extracellular potassium concentration may be largely responsible. In this study, a mathematical model was developed to examine the effect of extracellular potassium concentration on the muscle fiber action potential and conduction velocity. The model was used to simulate changes in extracellular potassium concentration at a range of temperatures and extracellular potassium accumulation during repetitive stimulation of the muscle fiber at 37 °C. The action potential broadened, and its amplitude and conduction velocity decreased as extracellular potassium concentration increased. The potassium-induced changes in action potential shape and conduction velocity were eliminated when the inward rectifier channels were removed from the model. The results support the hypothesis that accumulation of extracellular potassium ions may be a major contributor to the reduction in muscle fiber conduction velocity and loss of membrane excitability during fatiguing contractions. They additionally suggest that inward rectifier currents play a critical role in potassium-induced membrane depolarization, leading to increased sodium inactivation and resulting in the observed reduction in conduction velocity and membrane excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Adrian, R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. 133(3):631–658, 1956.

    CAS  PubMed  Google Scholar 

  2. Adrian, R. H., and L. D. Peachey. Reconstruction of the action potential of frog sartorius muscle. J. Physiol. 235(1):103–131, 1973.

    CAS  PubMed  Google Scholar 

  3. Bigland-Ritchie, B., E. Cafarelli, and N. K. Vollestad. Fatigue of submaximal static contractions. Acta Physiol. Scand. Suppl. 556:137–148, 1986.

    CAS  PubMed  Google Scholar 

  4. Bigland-Ritchie, B., et al. Muscle temperature, contractile speed, and motoneuron firing rates during human voluntary contractions. J. Appl. Physiol. 73(6):2457–2461, 1992.

    CAS  PubMed  Google Scholar 

  5. Bouchard, R., et al. Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1. J. Physiol. 556(3):773–790, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Bretag, A. H. Muscle chloride channels. Physiol. Rev. 67(2):618–724, 1987.

    CAS  PubMed  Google Scholar 

  7. Brody, L. R., et al. pH-induced effects on median frequency and conduction velocity of the myoelectric signal. J. Appl. Physiol. 71(5):1878–1885, 1991.

    CAS  PubMed  Google Scholar 

  8. Caffier, G., and N. E. Shvinka. Effect of temperature on the inward rectifier and gramicidin A-induced channels in the membrane of frog skeletal muscle fibres. Gen. Physiol. Biophys. 5(1):47–51, 1986.

    CAS  PubMed  Google Scholar 

  9. Cannon, S. C., R. H. Brown, Jr., and D. P. Corey. Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys. J. 65(1):270–288, 1993.

    Article  CAS  PubMed  Google Scholar 

  10. Clausen, T. Na+–K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 83(4):1269–1324, 2003.

    CAS  PubMed  Google Scholar 

  11. Dal Santo, G. A Laboratory Basis for Anesthesiology. Padua: PICCIN, 1993, 900 pp.

  12. De Luca, C. J. Myoelectrical manifestations of localized muscular fatigue in humans. Crit. Rev. Biomed. Eng. 11(4):251–279, 1984.

    PubMed  Google Scholar 

  13. Debold, E. P., H. Dave, and R. H. Fitts. Fiber type and temperature dependence of inorganic phosphate: implications for fatigue. Am. J. Physiol. Cell Physiol. 287(3):C673–C681, 2004.

    Article  CAS  PubMed  Google Scholar 

  14. Fabiato, A., and F. Fabiato. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J. Physiol. 276:233–255, 1978.

    CAS  PubMed  Google Scholar 

  15. Farina, D., and R. Merletti. Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 42(4):432–445, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Hayward, L. J., et al. Targeted mutation of mouse skeletal muscle sodium channel produces myotonia and potassium-sensitive weakness. J. Clin. Invest. 118(4):1437–1449, 2008.

    CAS  PubMed  Google Scholar 

  17. Henneberg, K. A., and F. A. Roberge. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor. Ann. Biomed. Eng. 25(1):5–28, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4):500–544, 1952.

    CAS  PubMed  Google Scholar 

  19. Hodgkin, A. L., and B. Katz. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 108(1):37–77, 1949.

    CAS  PubMed  Google Scholar 

  20. Hodgkin, A. L., and S. Nakajima. The effect of diameter on the electrical constants of frog skeletal muscle fibres. J. Physiol. 221(1):105–120, 1972.

    CAS  PubMed  Google Scholar 

  21. Jones, D. A. Muscle Fatigue Due to Changes Beyond the Neuromuscular Junction. London: Pitman Medical, pp. 178–196, 1981.

    Google Scholar 

  22. Juel, C. Muscle action potential propagation velocity changes during activity. Muscle Nerve 11(7):714–719, 1988.

    Article  CAS  PubMed  Google Scholar 

  23. Juel, C. Na+–K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296(1):R125–R132, 2009.

    CAS  PubMed  Google Scholar 

  24. Juel, C., et al. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278(2):R400–R406, 2000.

    CAS  PubMed  Google Scholar 

  25. Kirsch, G. E., R. A. Nichols, and S. Nakajima. Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle. J. Gen. Physiol. 70(1):1–21, 1977.

    Article  CAS  PubMed  Google Scholar 

  26. Kossler, F., et al. External potassium and action potential propagation in rat fast and slow twitch muscles. Gen. Physiol. Biophys. 10(5):485–498, 1991.

    CAS  PubMed  Google Scholar 

  27. Kristensen, M., T. Hansen, and C. Juel. Membrane proteins involved in potassium shifts during muscle activity and fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290(3):R766–R772, 2006.

    CAS  PubMed  Google Scholar 

  28. Lannergren, J., and H. Westerblad. Force and membrane potential during and after fatiguing, continuous high-frequency stimulation of single Xenopus muscle fibres. Acta Physiol. Scand. 128(3):359–368, 1986.

    Article  CAS  PubMed  Google Scholar 

  29. Li, J., et al. Interstitial K+ concentration in active muscle after myocardial infarction. Am J Physiol Heart Circ Physiol. 292(2):H808–H813, 2007.

    Article  CAS  PubMed  Google Scholar 

  30. Lindstrom, L., and R. Magnusson. Interpretation of myoelectric power spectra: a model and its applications. Proc. IEEE 65(5):653–662, 1977.

    Article  Google Scholar 

  31. Lindstrom, L., R. Magnusson, and I. Petersen. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 10(4):341–356, 1970.

    CAS  PubMed  Google Scholar 

  32. Ling, G., and R. W. Gerard. External potassium and the membrane potential of single muscle fibers. Nature 165(4186):113, 1950.

    Article  CAS  PubMed  Google Scholar 

  33. Lowery, M., P. Nolan, and M. O’Malley. Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle. J. Electromyogr. Kinesiol. 12(2):111–118, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Luo, C. H., and Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6):1071–1096, 1994.

    CAS  PubMed  Google Scholar 

  35. Masuda, K., et al. Changes in surface EMG parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 9(1):39–46, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. McComas, A. J., et al. The role of the Na+, K+-pump in delaying muscle fatigue. In: Neuromuscular Fatigue, edited by A. J. Sargeant and D. Kernell. Amsterdam: Royal Netherlands Academy of Arts & Sciences, 1993, pp. 35–43.

  37. McKenna, M. J. The roles of ionic processes in muscular fatigue during intense exercise. Sports Med. 13(2):134–145, 1992.

    Article  PubMed  Google Scholar 

  38. McKenna, M. J., J. Bangsbo, and J. M. Renaud. Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J. Appl. Physiol. 104(1):288–295, 2008.

    Article  CAS  PubMed  Google Scholar 

  39. Merletti, R., M. Knaflitz, and C. J. De Luca. Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J. Appl. Physiol. 69(5):1810–1820, 1990.

    CAS  PubMed  Google Scholar 

  40. Mills, K. R., and R. H. Edwards. Muscle fatigue in myophosphorylase deficiency: power spectral analysis of the electromyogram. Electroencephalogr. Clin. Neurophysiol. 57(4):330–335, 1984.

    Article  CAS  PubMed  Google Scholar 

  41. Mortimer, J. T., R. Magnusson, and I. Petersen. Conduction velocity in ischemic muscle: effect on EMG frequency spectrum. Am. J. Physiol. 219(5):1324–1329, 1970.

    CAS  PubMed  Google Scholar 

  42. Nielsen, J. J., et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J. Physiol. 554(3):857–870, 2004.

    Article  CAS  PubMed  Google Scholar 

  43. Nielsen, O. B., et al. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+–K+ pump activity. J. Physiol. 557(Pt 1):133–146, 2004.

    Article  CAS  PubMed  Google Scholar 

  44. Nordsborg, N., et al. Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285(1):R143–R148, 2003.

    CAS  PubMed  Google Scholar 

  45. Overgaard, K., O. B. Nielsen, and T. Clausen. Effects of reduced electrochemical Na+ gradient on contractility in skeletal muscle: role of the Na+–K+ pump. Pflugers Arch. 434(4):457–465, 1997.

    Article  CAS  PubMed  Google Scholar 

  46. Pappone, P. A. Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres. J. Physiol. 306:377–410, 1980.

    CAS  PubMed  Google Scholar 

  47. Pedersen, T. H., et al. Intracellular acidosis enhances the excitability of working muscle. Science 305(5687):1144–1147, 2004.

    Article  CAS  PubMed  Google Scholar 

  48. Ruff, R. L., L. Simoncini, and W. Stuhmer. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve 11(5):502–510, 1988.

    Article  CAS  PubMed  Google Scholar 

  49. Rutkove, S. B. Effects of temperature on neuromuscular electrophysiology. Muscle Nerve 24(7):867–882, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Sejersted, O. M., and G. Sjogaard. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol. Rev. 80(4):1411–1481, 2000.

    CAS  PubMed  Google Scholar 

  51. Sjogaard, G. Potassium and fatigue: the pros and cons. Acta Physiol. Scand. 156(3):257–264, 1996.

    Article  CAS  PubMed  Google Scholar 

  52. Sjogaard, G., G. Savard, and C. Juel. Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 57(3):327–335, 1988.

    Article  CAS  PubMed  Google Scholar 

  53. Standen, N. B., and P. R. Stanfield. Inward rectification in skeletal muscle: a blocking particle model. Pflugers Arch. 378(2):173–176, 1978.

    Article  CAS  PubMed  Google Scholar 

  54. Stefani, E., and A. B. Steinbach. Resting potential and electrical properties of frog slow muscle fibres. Effect of different external solutions. J. Physiol. 203(2):383–401, 1969.

    CAS  PubMed  Google Scholar 

  55. Stephanova, D. I., and G. V. Dimitrov. Mathematical modeling of ionic processes in human skeletal muscle fibres. Electromyogr. Clin. Neurophysiol. 22(5):329–347, 1982.

    CAS  PubMed  Google Scholar 

  56. Stulen, F. B., and C. J. DeLuca. Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans. Biomed. Eng. 28(7):515–523, 1981.

    Article  CAS  PubMed  Google Scholar 

  57. Venosa, R. A., and P. Horowicz. Density and apparent location of the sodium pump in frog sartorius muscle. J. Membr. Biol. 59(3):225–232, 1981.

    Article  CAS  PubMed  Google Scholar 

  58. Vyskocil, F., et al. The measurement of K+e concentration changes in human muscles during volitional contractions. Pflugers Arch. 399(3):235–237, 1983.

    Article  CAS  PubMed  Google Scholar 

  59. Wallinga, W., et al. Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. Eur. Biophys. J. 28(4):317–329, 1999.

    Article  CAS  PubMed  Google Scholar 

  60. Westerblad, H., D. G. Allen, and J. Lannergren. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol. Sci. 17:17–21, 2002.

    CAS  PubMed  Google Scholar 

  61. Whalley, D. W., et al. Voltage-independent effects of extracellular K+ on the Na+ current and phase 0 of the action potential in isolated cardiac myocytes. Circ. Res. 75(3):491–502, 1994.

    CAS  PubMed  Google Scholar 

  62. Zwarts, M. J., and L. Arendt-Nielsen. The influence of force and circulation on average muscle fibre conduction velocity during local muscle fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 58(3):278–283, 1988.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Fortune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortune, E., Lowery, M.M. Effect of Extracellular Potassium Accumulation on Muscle Fiber Conduction Velocity: A Simulation Study. Ann Biomed Eng 37, 2105–2117 (2009). https://doi.org/10.1007/s10439-009-9756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9756-4

Keywords

Navigation