Annals of Biomedical Engineering

, Volume 37, Issue 9, pp 1849–1857 | Cite as

Spatial Filtering Improves EMG Classification Accuracy Following Targeted Muscle Reinnervation

Article

Abstract

The combination of targeted muscle reinnervation (TMR) and pattern classification of electromyography (EMG) has shown great promise for multifunctional myoelectric prosthesis control. In this study, we hypothesized that surface EMG recordings with high spatial resolution over reinnervated muscles could capture focal muscle activity and improve the classification accuracy of identifying intended movements. To test this hypothesis, TMR subjects with transhumeral or shoulder disarticulation amputations were recruited. Spatial filters such as single differential filters, double differential filters, and various two-dimensional, high-order spatial filters were used, and the classification accuracies for fifteen different movements were calculated. Compared with monopolar recordings, spatially localized EMG signals produced increased accuracy in identifying the TMR patients’ movement intents, especially for hand movements. When the number of EMG signals was constrained to 12, the double differential filters gave 5–15% higher classification accuracies than the filters with lower spatial resolution, but resulted in comparable accuracies to the filters with higher spatial resolution. These results suggest that double differential EMG recordings may further improve the TMR-based neural interface for robust, multifunctional control of artificial arms.

Keywords

Electromyography Targeted muscle reinnervation Spatial filter Neural–machine interface 

References

  1. 1.
    Basmajian, J. V., and C. J. De Luca. Muscles Alive : Their Functions Revealed by Electromyography. Baltimore: Williams & Wilkins, pp. xii, 561, 1985.Google Scholar
  2. 2.
    Disselhorst-Klug, C., J. Silny, G. Rau. Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters. IEEE Trans Biomed Eng 44:567-74, 1997. doi:10.1109/10.594897.PubMedCrossRefGoogle Scholar
  3. 3.
    Duda, R. O., P. E. Hart, and D. G. Stork. Pattern Classification. New York: Wiley, pp. xx, 654, 2001.Google Scholar
  4. 4.
    Englehart, K., B. Hudgins. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 50:848-54, 2003. doi:10.1109/TBME.2003.813539.PubMedCrossRefGoogle Scholar
  5. 5.
    Englehart, K., B. Hudgins, P. A. Parker, M. Stevenson. Classification of the myoelectric signal using time-frequency based representations. Med Eng Phys 21:431-8, 1999. doi:10.1016/S1350-4533(99)00066-1.PubMedCrossRefGoogle Scholar
  6. 6.
    Farina, D., C. Cescon. Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Trans Biomed Eng 48:1326-34, 2001. doi:10.1109/10.959328.PubMedCrossRefGoogle Scholar
  7. 7.
    Farrell, T. R., R. F. Weir. A comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Trans Biomed Eng 55:2198-211, 2008. doi:10.1109/TBME.2008.923917.PubMedCrossRefGoogle Scholar
  8. 8.
    Graupe, D., J. Salahi, K. H. Kohn. Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. J Biomed Eng 4:17-22, 1982. doi:10.1016/0141-5425(82)90021-8.PubMedCrossRefGoogle Scholar
  9. 9.
    Hargrove, L. J., K. Englehart, B. Hudgins. A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 54:847-53, 2007. doi:10.1109/TBME.2006.889192.PubMedCrossRefGoogle Scholar
  10. 10.
    Hijjawi, J. B., T. A. Kuiken, R. D. Lipschutz, L. A. Miller, K. A. Stubblefield, G. A. Dumanian. Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast Reconstr Surg 118:1573-8, 2006. doi:10.1097/01.prs.0000242487.62487.fb.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoffer, J. A., G. E. Loeb. Implantable electrical and mechanical interfaces with nerve and muscle. Ann Biomed Eng 8:351-60, 1980. doi:10.1007/BF02363438.PubMedCrossRefGoogle Scholar
  12. 12.
    Huang, H., T. Kuiken, R. D. Lipschutz. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng 56:65-73, 2009. doi:10.1109/TBME.2008.2003293.PubMedCrossRefGoogle Scholar
  13. 13.
    Huang, H., P. Zhou, G. Li, T. A. Kuiken. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng 16:37-45, 2008. doi:10.1109/TNSRE.2007.910282.PubMedCrossRefGoogle Scholar
  14. 14.
    Hudgins, B., P. Parker, R. N. Scott. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82-94, 1993. doi:10.1109/10.204774.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuiken, T. A., D. S. Childress, W. Z. Rymer. The hyper-reinnervation of rat skeletal muscle. Brain Res 676:113-23, 1995. doi:10.1016/0006-8993(95)00102-V.PubMedCrossRefGoogle Scholar
  16. 16.
    Kuiken, T. A., G. A. Dumanian, R. D. Lipschutz, L. A. Miller, K. A. Stubblefield. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28:245-53, 2004.PubMedGoogle Scholar
  17. 17.
    Kuiken, T. A., L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield, P. D. Marasco, P. Zhou, G. A. Dumanian. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:371-80, 2007. doi:10.1016/S0140-6736(07)60193-7.PubMedCrossRefGoogle Scholar
  18. 18.
    Parker, P., K. Englehart, B. Hudgins. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol 16:541-8, 2006. doi:10.1016/j.jelekin.2006.08.006.PubMedCrossRefGoogle Scholar
  19. 19.
    van Vugt, J. P., J. G. van Dijk. A convenient method to reduce crosstalk in surface EMG. Cobb Award-winning article, 2001. Clin Neurophysiol 112:583-92, 2001. doi:10.1016/S1388-2457(01)00482-5.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams, T. W., 3rd. Practical methods for controlling powered upper-extremity prostheses. Assist Technol 2:3-18, 1990.PubMedGoogle Scholar
  21. 21.
    Zhou, P., M. M. Lowery, K. B. Englehart, H. Huang, G. Li, L. Hargrove, J. P. Dewald, T. A. Kuiken. Decoding a new neural machine interface for control of artificial limbs. J Neurophysiol 98:2974-82, 2007. doi:10.1152/jn.00178.2007.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • He Huang
    • 1
    • 2
  • Ping Zhou
    • 1
    • 3
  • Guanglin Li
    • 1
    • 3
    • 5
  • Todd Kuiken
    • 1
    • 3
    • 4
  1. 1.Neural Engineering Center for Artificial LimbsRehabilitation Institute of ChicagoChicagoUSA
  2. 2.Department of Electrical, Computer, and Biomedical EngineeringUniversity of Rhode IslandKingstonUSA
  3. 3.Department of Physical Medicine and RehabilitationNorthwestern UniversityChicagoUSA
  4. 4.Institute of Biomedical EngineeringNorthwestern UniversityChicagoUSA
  5. 5.Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenP.R. China

Personalised recommendations