Skip to main content
Log in

Evaluation of Human Endothelial Cells Post Stent Deployment in a Cardiovascular Simulator In Vitro

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Percutaneous stent implantation has revolutionized the clinical treatment of occluded arteries. Nevertheless, there is still a large unmet need to prevent re-occlusion after implantation. Consequently, a niche exists for a cost-effective pre-clinical method of evaluating novel interventional devices in human models. Therefore, the development of a coronary model artery offers tremendous potential for the treatment of endothelial cell dysfunction and restenosis. As a first step, we employ tissue-engineering principles to examine the effect of stent deployment upon endothelial cells in a tubular in vitro system capable of replicating the coronary artery biomechanical environment. In particular, the cellular and molecular changes pertaining to inflammation, proliferation, and death were assessed after stent deployment. Real-time quantitative PCR demonstrated increased expression of genes encoding for E-Selectin, ICAM-1, and VCAM-1; markers associated with an inflammatory response in vivo. Further, an increase in the pro-apoptotic protein Bax was paralleled with a decrease in the anti-apoptotic protein Bcl-2; however, apoptotic morphology was not observed. Interestingly, transcription of c-fos increased, whereas Ki67 levels fell over the same period. One hypothesis is that these results are in response to the altered local hemodynamic environment induced by stent deployment. Most significantly, this study highlights the potential of a biomimetic hemodynamic bioreactor combined with a gene expression analysis to evaluate, with greater specificity, the performance and interaction of stents with the endothelial layer in a controlled environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Akimoto, S., M. Mitsumata, T. Sasaguri, and Y. Yoshida. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ. Res. 86:185–190, 2000.

    PubMed  CAS  Google Scholar 

  2. Andersson M., L. Karlsson, P.A. Svensson, E. Ulfhammer, M. Ekman, M. Jernås, L.M.S. Carlsson, and S. Jern. Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure. J Vasc Res. 42:441–452, 2005. doi:10.1159/000087983

    Article  PubMed  CAS  Google Scholar 

  3. Ando, J., H. Tsuboi, R. Korenaga, Y. Takada, N. Toyama-Sorimachi, M. Miyasaka, and A. Kamiya. Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am. J. Physiol. Cell. Physiol. 267:C679–687, 1994.

    CAS  Google Scholar 

  4. Aoyagi, M., M. Yamamoto, H. Wakimoto, H. Azuma, K. Hirakawa and K. Yamamoto. Immunohistochemical detection of Ki-67 in replicative smooth muscle cells of rabbit carotid arteries after balloon denudation. Stroke. 26:2328–2332, 1995.

    PubMed  CAS  Google Scholar 

  5. Benbrahim, A., G.J. L’Italien, C.J. Kwolek, M.J. Petersen, B. Milinazzo, J.P Gertler, W.M. Abbott, and R.W. Orkin. Characteristics of vascular wall cells subjected to dynamic cyclic strain and fluid shear conditions in vitro. J. Surg. Res. 65:119–127, 1996. doi:10.1006/jsre.1996.0353

    Article  PubMed  CAS  Google Scholar 

  6. Bernard, N.C.D., E. Donal, and R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intrastent wall shear stress. J Biomech. 36:991–998, 2003. doi:10.1016/S0021-9290(03)00068-X

    Article  Google Scholar 

  7. Berry, J.L., E. Manoach, C. Mekkaoui, P.H. Rolland, J.E. Moore Jr, and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. J. Vasc. Interv. Radiol. 13:97-105, 2002. doi:10.1016/S1051-0443(07)60015-3

    Article  PubMed  Google Scholar 

  8. Berry, J.L., A. Santamarina, J.E. Jr Moore, S. Roychowdhury, and W.D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386-398, 2000. doi:10.1114/1.276

    Article  PubMed  CAS  Google Scholar 

  9. Butcher, J.T., and R.M. Nerem. Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J Heart Valve Dis. 13:478-485, 2004.

    PubMed  Google Scholar 

  10. Chappell, D.C., S.E. Varner, R.M. Nerem, R.M. Medford, and R.W. Alexander. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82:532-539, 1998.

    PubMed  CAS  Google Scholar 

  11. Chien, S., S. Li, and Y.J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension. 31:162-169, 1998.

    PubMed  CAS  Google Scholar 

  12. Chiu, J.J., L.J. Chen, C.N. Chen, P.L. Lee and C.I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech. 37:531-539, 2004. doi:10.1016/j.jbiomech.2003.08.012

    Article  PubMed  Google Scholar 

  13. Chiu, J.J., L.J. Chen, P.L. Lee, C.I. Lee, L.W. Lo, S. Usami, and S. Chien. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood. 101:2667-2674, 2003. doi:10.1182/blood-2002-08-2560

    Article  PubMed  CAS  Google Scholar 

  14. Edelman, E.R., and C. Rogers. Hoop Dreams: Stents without restenosis. Circulation. 94:1199-1202, 1996.

    PubMed  CAS  Google Scholar 

  15. Edelman, E.R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E-6E, 1998. doi:10.1016/S0002-9149(98)00189-1

    Article  PubMed  CAS  Google Scholar 

  16. Farivar, R.S., L.H. Cohn, E.G. Soltesz, T. Mihaljevic, J.D. Rawn and J.G. Byrne. Transcriptional profiling and growth kinetics of endothelium reveals differences between cells derived from porcine aorta versus aortic valve. Eur J Cardiothorac Surg. 24:527-534, 2003. doi:10.1016/S1010-7940(03)00408-1

    Article  PubMed  Google Scholar 

  17. Garg, R., B.F. Uretsky, and E.I. Lev. Anti-platelet and anti-thrombotic approaches in patients undergoing percutaneous coronary intervention. Catheter Cardiovasc Interv. 70:388-406, 2007. doi:10.1002/ccd.21204

    Article  PubMed  Google Scholar 

  18. Gimbrone M.A. Jr. Vascular endothelium, hemodynamic forces, and atherogenesis. Am J Pathol. 155:1-5, 1999.

    PubMed  Google Scholar 

  19. Gimbrone, M.A. Jr., J.N. Topper, T. Nagel, K.R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902:230-240, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Grewe, P.H., T. Deneke, A. Machraoui, J. Barmeyer and K.M. Müller. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol. 35:157-163, 2000. doi:10.1016/S0735-1097(99)00486-6

    Article  PubMed  CAS  Google Scholar 

  21. He,Y., N. Duraiswamy, A.O. Frank, and J.E. Moore Jr. (2005) Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J Biomech Eng 127:637-647. doi:10.1115/1.1934122

    Article  PubMed  Google Scholar 

  22. He, W., T. Yong, W.E. Teo, Z. Ma and S. Ramakrishna. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 11:1574-1588, 2005. doi:10.1089/ten.2005.11.1574

    Article  PubMed  CAS  Google Scholar 

  23. Heider, P.W.M., W. Weiss, HJ. Berger, HH. Eckstein, and O. Wolf. Role of adhesion molecules in the induction of restenosis after angioplasty in the lower limb. J. Vasc. Surg. 43:969-977, 2006. doi:10.1016/j.jvs.2005.11.061

    Article  PubMed  Google Scholar 

  24. Hsiai, TK., SK. Cho, S. Reddy, S. Hama, M. Navab. Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cells. Arterioscler. Thromb. Vasc. Biol. 21:1770-1776, 2001. doi:10.1161/hq1001.097104

    Article  PubMed  CAS  Google Scholar 

  25. Kilickap, M, E. Tutar, O. Aydintug, G. Pamir, C. Erol, H. Tutkak, and D. Oral. Increase in soluble E-selectin level after PTCA and stent implantation: a potential marker of restenosis. Int J Cardiol. 93:13-18, 2004. doi:10.1016/S0167-5273(03)00111-6

    Article  PubMed  Google Scholar 

  26. Livak, KJ., and TD. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402-408, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Malik, N., S.E. Francis, C.M. Holt, J. Gunn, G.L. Thomas, L. Shepherd, J. Chamberlain, C.M. Newman, D.C. Cumberland, and D.C. Crossman. Apoptosis and cell proliferation after porcine coronary angioplasty. Circulation. 98:1657-1665, 1998.

    PubMed  CAS  Google Scholar 

  28. McLucas, E., M.T. Moran, Y. Rochev, W.M. Carroll, and T.J. Smith. An investigation into the effect of surface roughness of stainless steel on human umbilical vein endothelial cell gene expression. Endothelium. 13:35-41, 2006. doi:10.1080/10623320600660185

    Article  PubMed  CAS  Google Scholar 

  29. Miyauchi, K., T. Kasai, T. Yokayama, K. Aihara, T. Kurata, K. Kajimoto, S. Okazaki, H. Ishiyama, and H. Daida. Effectiveness of statin-eluting stent on early inflammatory response and neointimal thickness in a porcine coronary model. Circ J. 72:832-838, 2008. doi:10.1253/circj.72.832

    Article  PubMed  Google Scholar 

  30. Monraats, P.S., F. de Vries, L.W. de Jong, D. Pons, V.D. Sewgobind, A.H. Zwinderman, M.P.M. de Maat, L.M. ‘t Hart, P.A. Doevendans, R.J. de Winter, R.A. Tio, J. Waltenberger, R.R. Frants, A. van der Laarse, E.E. van der Wall, and J. Wouter Jukema. Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention. Pharmacogenet. Genomics 16:747-754, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Monraats, P.S., N.M.M. Pires, W.R.P. Agema, A.H. Zwinderman, A. Schepers, M.P.M. de Maat, P.A. Doevendans, R.J. de Winter, R.A. Tio, J. Waltenberger, R.R. Frants, P HA. Quax, B.J.M. van Vlijmen, DE. Atsma, A. van der Laarse, E.E. Van der Wall, J. W. Jukema. Genetic inflammatory factors predict restenosis after percutaneous coronary interventions. Circulation. 112:2417-2425, 2005. doi:10.1161/CIRCULATIONAHA.105.536268

    Article  PubMed  Google Scholar 

  32. Moore, J. Jr., and Berry, J.L. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng. 30:498-508, 2002. doi:10.1114/1.1458594

    Article  PubMed  Google Scholar 

  33. Moore, J.E. Jr., E. Bürki, A. Suciu, S. Zhao, M. Burnier, H.R. Brunner, and J.J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann.Biomed. Eng. 22:416-422, 1994. doi:10.1007/BF02368248

    Article  PubMed  Google Scholar 

  34. Murasaki, K., M. Kawana, S. Murasaki, Y. Tsurumi, K. Tanoue, N. Hagiwara, and H. Kasanuki. High P-selectin expression and low CD36 occupancy on circulating platelets are strong predictors of restenosis after coronary stenting in patients with coronary artery disease. Heart Vessels. 22:229-236, 2007. doi:10.1007/s00380-006-0966-5

    Article  PubMed  Google Scholar 

  35. Nagel, T., N. Resnik, W.J. Atkinson, C.F. Jr. Dewey, and M.A. Jr Gimbrone. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94:885-891, 1994. doi:10.1172/JCI117410

    Article  PubMed  CAS  Google Scholar 

  36. Nagel, T., N. Resnick, C.F. Jr. Dewey, and M.A. Jr Gimbrone. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825-1834, 1999.

    PubMed  CAS  Google Scholar 

  37. O’Cearbhaill, E.D., M.A. Punchard, M. Murphy, F.P. Barry, P.E. McHugh, and V. Barron. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials. 29:1610-1619, 2008. doi:10.1016/j.biomaterials.2007.11.042

    Article  PubMed  CAS  Google Scholar 

  38. O’Halloran-Cardinal, K., G.T. Bonnema, H. Hofer, J.K. Barton, and S.K. Williams. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng. 12:3431-3438, 2006. doi:10.1089/ten.2006.12.3431

    Article  Google Scholar 

  39. Ohtsuka, A., J. Ando, R. Korenaga, A. Kamiya, N. Toyama-Sorimachi, and M. Miyasaka. The effect of flow on the expression of vascular adhesion molecule-1 by cultured mouse endothelial cells. Biochem. Biophys. Res. Commun. 193:303-310, 1993. doi:10.1006/bbrc.1993.1624

    Article  PubMed  CAS  Google Scholar 

  40. Peacock, J., S. Hankins, T. Jones, and R. Lutz. Flow instabilities induced by coronary artery stents: assessment with an in vitro pulse duplicator. J. Biomech. 28:17-26, 1995. doi:10.1016/0021-9290(95)80003-4

    Article  PubMed  CAS  Google Scholar 

  41. Peng, X., F.A. Recchia, B.J. Byrne, I.S. Wittstein, R.C. Ziegelstein, and D.A. Kass. In vitro system to study realistic pulsatile flow and stretch signaling in cultured vascular cells. Am. J. Physiol. Cell Physiol. 279:C797-805, 2000.

    PubMed  CAS  Google Scholar 

  42. Punchard, M.A., C. Stenson-Cox, E.D. O’Cearbhaill, E. Lyons, S. Gundy, L. Murphy, A. Pandit, P.E. McHugh, and V. Barron. Endothelial cell response to biomechanical forces under simulated vascular loading conditions. J. Biomech. 40:3146-3154, 2007. doi:10.1016/j.jbiomech.2007.03.029

    Article  PubMed  CAS  Google Scholar 

  43. Qiu, Y., and J.M. Tarbell. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J. Vasc. Res. 37:147-157, 2000. doi:10.1159/000025726

    Article  PubMed  CAS  Google Scholar 

  44. Rasband, W. ImageJ. Bethesda, MD: U. S. National Institutes of Health, 1997–2006. http://rsb.info.nih.gov/ij/

  45. Rogers, C., D.Y. Tseng, J.C. Squire, and E.R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378-383, 1999.

    PubMed  CAS  Google Scholar 

  46. Rolland, P.H., A.B. Charifi, C. Verrier, H. Bodard, A. Friggi, P. Piquet, G. Moulin, and J.M. Bartoli. Hemodynamics and wall mechanics after stent placement in swine iliac arteries: comparative results from six stent designs. Radiology. 213:229-246, 1999.

    PubMed  CAS  Google Scholar 

  47. Sampath, R., G.L. Kukielka, C.W. Smith, S.G. Eskin, and L.V. McIntire. Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro. Ann. Biomed. Eng. 23:247-256, 1995. doi:10.1007/BF02584426

    Article  PubMed  CAS  Google Scholar 

  48. Shimizu, N., H. Suzuki, K. Wakabayashi, Y. Iso, M. Shibata, M. Yorozuya, T. Katagiri, and Y. Takeyama. Expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the pig coronary artery injury model: comparison of plain old balloon angioplasty and stent implantation. J. Cardiol. 43:131-139, 2004 (abstract).

    PubMed  Google Scholar 

  49. Shirinsky, V., A. Antonov, K. Birukov, A. Sobolevsky, Y. Romanov, N.V. Kabaeva, G.N. Antonova, and V.N. Smirnov. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109:331-339, 1989. doi:10.1083/jcb.109.1.331

    Article  PubMed  CAS  Google Scholar 

  50. Stenson-Cox, C., V. Barron, B. Murphy, P.E. McHugh, and T.S. Smith. Profiling the shear stress of atherosclerosis; a genomic view. Curr. Genomics. 5:287-297, 2004. doi:10.2174/1389202043349327

    Article  CAS  Google Scholar 

  51. Sung, H.J., A. Yee, S.G. Eskin, and L.V. McIntire. Cyclic strain and motion control produce opposite oxidative responses in two human endothelial cell types. Am J Physiol Cell Physiol. 293:C87-94, 2007. doi:10.1152/ajpcell.00585.2006

    Article  PubMed  CAS  Google Scholar 

  52. Tardy, Y., N. Resnick, T. Nagel, M.A. Jr. Gimbrone, C.F. Jr. Dewey. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102-3106, 1997.

    PubMed  CAS  Google Scholar 

  53. Thoumine, O., R.M. Nerem, P.R. Girard. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress. Lab Invest. 73:565-576, 1995.

    PubMed  CAS  Google Scholar 

  54. Tsuboi, H., J. Ando, R. Korenaga, Y. Takada and A. Kamiya. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem. Biophys. Res. Commun. 206:988-996, 1995. doi:10.1006/bbrc.1995.1140

    Article  PubMed  CAS  Google Scholar 

  55. Van Belle, E., C. Bauters, T. Asahara, and J.M. Isner. Endothelial regrowth after arterial injury: from vascular repair to therapeutics. Cardiovasc. Res. 38:54-68, 1998. doi:10.1016/S0008-6363(97)00326-X

    Article  PubMed  Google Scholar 

  56. Van Belle, E., F.O. Tio, T. Couffinhal, L. Maillard, J. Passeri, and J.M. Isner. Stent endothelialization: time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation. 95:438-448, 1997.

    PubMed  Google Scholar 

  57. Vernhet, H., R. Demaria, J.M. Juan, M.C. Oliva-Lauraire, J.P. Senac, and M. Dauzat. Changes in wall mechanics after endovascular stenting in the rabbit aorta: comparison of three stent designs. AJR Am. J. Roentgenol. 176:803-807, 2001.

    PubMed  CAS  Google Scholar 

  58. Wexberg, P., N. Jordanova, C. Strehblow, B. Syeda, B. Meyer, S. Charvat, G. Zorn, D. Scheinig, J. Wojta, K. Huber, D. Glogar, and M. Gyongyosi. Time course of prothrombotic and proinflammatory substance release after intracoronary stent implantation. Thromb. Haemost. 99:739-748, 2008.

    PubMed  CAS  Google Scholar 

  59. Yazdani, S.K., J.E. Moore Jr., J.L. Berry and P.P. Vlachos. DPIV measurements of flow disturbances in stented artery models: adverse affects of compliance mismatch. J Biomech Eng. 126:559-566, 2004. doi:10.1115/1.1797904

    Article  PubMed  Google Scholar 

  60. Zhao, S., A. Suciu, T. Ziegler, J.E. Jr. Moore, E. Burki, J.J. Meister, H.R. Brunner, R. Hans. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15:1781-1786, 1995.

    PubMed  CAS  Google Scholar 

  61. Ziegler, T., K. Bouzourene, V. J. Harrison, H. R. Brunner, and D. Hayoz (1998) Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler Thromb Vasc Biol 18:686-692

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Program for Research in Third Level Institutions, administered by the Higher Education Authority, the Enterprise Ireland Commercialization Fund for Technology Development (CFTD/03/409) and the European Union Framework 6 Marie Curie Transfer of Knowledge Programme (MTKD-CT-2004-509853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Barron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punchard, M.A., O’Cearbhaill, E.D., Mackle, J.N. et al. Evaluation of Human Endothelial Cells Post Stent Deployment in a Cardiovascular Simulator In Vitro . Ann Biomed Eng 37, 1322–1330 (2009). https://doi.org/10.1007/s10439-009-9701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9701-6

Keywords

Navigation