Skip to main content
Log in

Continuous Left Ventricular Ejection Fraction Monitoring by Aortic Pressure Waveform Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We developed a technique to monitor left ventricular ejection fraction (EF) by model-based analysis of the aortic pressure waveform. First, the aortic pressure waveform is represented with a lumped parameter circulatory model. Then, the model is fitted to each beat of the waveform to estimate its lumped parameters to within a constant scale factor equal to the arterial compliance (C a). Finally, the proportional parameter estimates are utilized to compute beat-to-beat absolute EF by cancelation of the C a scale factor. In this way, in contrast to conventional imaging, EF may be continuously monitored without any ventricular geometry assumptions. Moreover, with the proportional parameter estimates, relative changes in beat-to-beat left ventricular end-diastolic volume (EDV), cardiac output (CO), and maximum left ventricular elastance (E max) may also be monitored. To evaluate the technique, we measured aortic pressure waveforms, reference EF and EDV via standard echocardiography, and other cardiovascular variables from six dogs during various pharmacological influences and total intravascular volume changes. Our results showed overall EF and calibrated EDV root-mean-squared-errors of 5.6% and 4.1 mL, and reliable estimation of relative E max and beat-to-beat CO changes. These results demonstrate, perhaps for the first time, the feasibility of estimating EF from only a blood pressure waveform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

C a :

arterial compliance (mL/mmHg)

E lv(t):

time-varying ventricular elastance function (mmHg/mL)

E max :

maximum left ventricular elastance (mmHg/mL)

E min :

minimum left ventricular elastance (mmHg/mL)

n :

discrete time or sample index (unitless)

n bs :

sample index denoting beginning of the systolic ejection interval (unitless)

n es :

sample index denoting end of the systolic ejection interval (unitless)

P a(t):

aortic pressure waveform (mmHg)

R a :

total peripheral resistance (mmHg-s/mL)

T :

sampling period (s)

T s :

time duration to reach E max from E min (s)

τ :

windkessel time constant (=R a C a) (s)

t :

time (s)

t bi :

time of beginning of the isovolumic contraction phase (s)

t bs :

time of beginning of the systolic ejection interval (s)

t es :

time of end of the systolic ejection interval (s)

V lv(t):

left ventricular (total) volume waveform (mL)

\( V_{\text{lv}}^{0} \) :

left ventricular unstressed volume (mL)

CO:

cardiac output (L/min)

ECG:

electrocardiogram (mV)

EDV:

left ventricular end-diastolic volume (mL)

EF:

left ventricular ejection fraction (%)

ESV:

left ventricular end-systolic volume (mL)

HR:

heart rate (bpm)

MAP:

mean aortic pressure (mmHg)

RMSE:

root-mean-squared-error (mL for EDV and % for EF)

RMSNE:

root-mean-squared-normalized-error (%)

SV:

left ventricular stroke volume (mL)

References

  1. Albaladejo, P., et al. Heart rate, arterial stiffness, and wave reflections in paced patients. Hypertension 38:949-952, 2001. doi:10.1161/hy1001.096210.

    Article  PubMed  CAS  Google Scholar 

  2. Ansari, M., and M. Barry. Heart failure: how big is the problem? Who are the patients? What does the future hold? Am. Heart J. 146(1):1-4, 2003.

    Article  PubMed  Google Scholar 

  3. Berger, R. D., J. P. Saul, and R. J. Cohen. Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am. J. Physiol. Heart Circ. Physiol. 256:126-131, 1989.

    Google Scholar 

  4. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307-310, 1986.

    PubMed  CAS  Google Scholar 

  5. Bosch, X., and P. Theroux. Left ventricular ejection fraction to predict early mortality in patients with non-ST-segment elevation acute coronary syndromes. Am. Heart J. 150:215-220, 2005. doi:10.1016/j.ahj.2004.09.027.

    Article  PubMed  Google Scholar 

  6. Bourgeois, M. J. et al. (1974) Characteristics of aortic diastolic pressure decay with application to the continuous monitoring of changes in peripheral vascular resistance. Circ Res 35(1):56–66

    PubMed  CAS  Google Scholar 

  7. Bourgeois, M. J. et al. (1976) Wood Continuous determination of beat-to-beat stroke volume from aortic pressure pulses in the dog. Circ Res 39(1):15–24

    PubMed  CAS  Google Scholar 

  8. Burkhoff, D. (1990) The conductance method of left ventricular volume estimation methodologic limitations put into perspective. Circulation 81(2):703–706.

    PubMed  CAS  Google Scholar 

  9. Chen, C. H., et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation 95:1827-1836, 1997.

    PubMed  CAS  Google Scholar 

  10. Cintron, G., et al. Prognostic significance of serial changes in left ventricular ejection fraction in patients with congestive heart failure. Circulation 87(6):17-23, 1993.

    Google Scholar 

  11. Critchley L. A. H., Critchley J. A. J. H. (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput. 15:85-91. doi:10.1023/A:1009982611386.

    Article  PubMed  CAS  Google Scholar 

  12. Curtis, J. P. et al. (2003) The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J. Am. Coll. Cardiol. 42(4):736–742 doi:10.1016/S0735-1097(03)00789-7

    Article  PubMed  Google Scholar 

  13. Dellegrottaglie, S., et al. Non-imaging nuclear monitoring of left ventricular function: twenty-five years of technical development and clinical experience. Ital. Heart J. 3(5):300-307, 2002.

    PubMed  Google Scholar 

  14. Guarini, M., et al. Estimation of cardiac function from computer analysis of the arterial pressure waveform. IEEE Trans. Biomed. Eng. 45(12):1420–1428, 1998. doi:10.1109/10.730436.

    Article  PubMed  CAS  Google Scholar 

  15. Hallock, P., and J. C. Benson. Studies on the elastic properties of human isolated aorta. Am. J. Physiol. 16, 595-602, 1937.

    CAS  Google Scholar 

  16. Heldt, T., et al. Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92(3):1239-1254, 2002.

    PubMed  Google Scholar 

  17. Hof, A. W. V., et al. Comparison of radionuclide angiography with three echocardiographic parameters of left ventricular function in patients after myocardial infarction. Int. J. Card. Imaging 14(6):413-418, 1998. doi:10.1023/A:1006082214191.

    Article  Google Scholar 

  18. Igarashi, Y., et al.. Transient vs. steady end-systolic pressure-volume relation in dog left ventricle. Am. J. Physiol. Heart Circ. Physiol. 252:998-1004, 1987.

    Google Scholar 

  19. Katz, A. M. Physiology of the Heart. New York: Raven Press, 1992.

    Google Scholar 

  20. Li J. K., and Y. Zhu. Arterial compliance and its pressure dependence in hypertension and vasodilation. Angiology 45(2):113-117, 1994. doi:10.1177/000331979404500205.

    Article  PubMed  CAS  Google Scholar 

  21. Lu, Z., and R. Mukkamala. Continuous cardiac output monitoring in humans by invasive and non-invasive peripheral blood pressure waveform analysis. J. Appl. Physiol. 101(2):598-608, 2006. doi:10.1152/japplphysiol.01488.2005.

    Article  PubMed  Google Scholar 

  22. Marino, P. L. The ICU Book. Baltimore, MD: Lippincott Williams & Wilkins, 1998.

    Google Scholar 

  23. Martinez, J. P., et al. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4):570-581, 2004. doi:10.1109/TBME.2003.821031.

    Article  PubMed  Google Scholar 

  24. Mukkamala, R., et al. Continuous Left Ventricular Ejection Fraction Monitoring by Central Aortic Pressure Waveform Analysis. Conf. Proc. IEEE Eng. Med. Biol. Sci. 28:620-623, 2006.

    Article  Google Scholar 

  25. Mukkamala, R., et al. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis. IEEE Trans. Biomed. Eng. 53(3):459-467, 2006. doi:10.1109/TBME.2005.869780.

    Article  PubMed  Google Scholar 

  26. Noordergraaf, A. Circulatory System Dynamics. New York: Academic Press, 1978.

    Google Scholar 

  27. Nosir, Y. F., et al. Accurate measurement of left ventricular ejection fraction by three-dimensional echocardiography. Circulation 94(3):460-466, 1996.

    PubMed  CAS  Google Scholar 

  28. Rumberger, J. A., et al. Determination of ventricular ejection fraction: a comparison of available imaging methods. Mayo Clin. Proc. 72:860-870, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Rushmer, R. F., D. L. Franklin, and R. M. Ellis. Left ventricular dimensions recorded by sonocardiometry. Circ. Res. 4:684-688, 1956.

    PubMed  Google Scholar 

  30. Sagawa, K., et al. End-systolic pressure/volume ratio: a new index of ventricular contractility. Am. J. Cardiol. 40:748-753, 1977. doi:10.1016/0002-9149(77)90192-8.

    Article  PubMed  CAS  Google Scholar 

  31. Schiller, N. B. Two-dimensional echocardiographic determination of left ventricular volume, systolic function, and mass. Summary and discussion of the 1989 recommendations of the American Society of Echocardiography. Circulation 84(3):280-287, 1991.

    Google Scholar 

  32. Senzaki, H., C. H. Chen, and D. A. Kass. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for non-invasive applications. Circulation 94:2497-2506, 1996.

    PubMed  CAS  Google Scholar 

  33. Soderstrom, S., et al. Can a clinically useful aortic pressure wave be derived from a radial pressure wave? Br. J. Anaesth. 88:481-488, 2002. doi:10.1093/bja/88.4.481.

    Article  PubMed  CAS  Google Scholar 

  34. Sridhara, B. S., et al. Rate of change of left ventricular ejection fraction during exercise is superior to the peak ejection fraction for predicting functionally significant coronary artery disease. Br. Heart J. 70:507-512, 1993. doi:10.1136/hrt.70.6.507.

    Article  PubMed  CAS  Google Scholar 

  35. Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised supported canine left ventricle. Circ. Res. 35:117-126, 1974.

    PubMed  CAS  Google Scholar 

  36. Sutton, M. S. J., et al. Quantitation of left ventricular volumes and ejection fraction in post-infarction patients from biplane and single plane two-dimensional echocardiograms. A prospective longitudinal study of 371 patients. Eur. Heart J. 19(5):808-816, 1998. doi:10.1053/euhj.1997.0852.

    Article  Google Scholar 

  37. Swamy, G. et al. (2007). Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms. Am. J. Physiol. 292:2257–2264

    Google Scholar 

  38. Swamy G, Mukkamala R (2008) Estimation of the aortic pressure waveform and beat-to-beat cardiac output from multiple peripheral artery pressure waveforms. IEEE Trans. Biomed. Eng. 55:1521-1529. doi:10.1109/TBME.2007.913408.

    Article  PubMed  Google Scholar 

  39. Swamy, G., et al. Continuous ejection fraction estimation by model-based analysis of an aortic pressure waveform: comparison to echocardiography. Conf. Proc. IEEE Eng. Med. Biol. Sci. 29: 963-966, 2007.

    Google Scholar 

  40. U.S. Department of Health and Human Services, HRASA, Bureau of Health Professions, National Center for Health Workforce Analysis. Projected supply, demand and shortages of registered nurses: 2000–2020, 2002

  41. Urzua, J., et al. Estimation of ventricular volume and elastance from the arterial pressure waveform. J. Clin. Monit. Comput. 14(3):177-181, 1998. doi:10.1023/A:1007459404104.

    Article  PubMed  CAS  Google Scholar 

  42. Xu, D., N. B. Olivier, and R. Mukkamala (2009) Continuous cardiac output and left atrial pressure monitoring by long time interval analysis of the pulmonary artery pressure waveform: proof-of-concept in dogs. J. Appl. Physiol. 106(2):651–661

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Joseph Prinsen, Mr. Thoralf Hoelzer-Maddox, and Dr. Augusta Pelosi, DVM, for their technical contributions to the data collection.

This work was supported by an award from the AHA and the NSF CAREER Grant 0643477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Mukkamala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, G., Kuiper, J., Gudur, M.S.R. et al. Continuous Left Ventricular Ejection Fraction Monitoring by Aortic Pressure Waveform Analysis. Ann Biomed Eng 37, 1055–1068 (2009). https://doi.org/10.1007/s10439-009-9675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9675-4

Keywords

Navigation