Skip to main content
Log in

Micro-Electrocardiograms to Study Post-Ventricular Amputation of Zebrafish Heart

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The zebrafish (Danio rerio) is an emerging model for cardiovascular research. The zebrafish heart regenerates after 20% ventricular amputation. However, assessment of the physiological responses during heart regeneration has been hampered by the small size of the heart and the necessity of conducting experiments in an aqueous environment. We developed a methodology to monitor a real-time surface electrocardiogram (ECG) by the use of micro-electrodes, signal amplification, and a low pass-filter at a sampling rate of 1 kHz. Wavelet transform was used to further remove ambient noises. Rather than paralyzing the fish, we performed mild sedation by placing the fish in a water bath mixed with MS-222 (tricane methanesulfonate). We recorded distinct P waves for atrial contraction, QRS complexes for ventricular depolarization, and QT intervals for ventricular repolarization prior to, and 2 and 4 days post-amputation (dpa). Sedation reduced the mean fish heart rate from 149 ± 18 to 90 ± 17 beats/min. The PR and QRS intervals remained unchanged in response to ventricular apical amputation (n = 6, p > 0.05). Corrected QT intervals (QTc) were shortened 4 dpa (n = 6, p < 0.05). In a parallel study, histology revealed that apical thrombi were replaced with fibrin clots and collagen fibers. Atrial arrhythmia was noted in response to prolonged sedation. Unlike the human counterpart, ventricular tachycardia or fibrillation was not observed in response to ventricular amputation 2 and 4 dpa. Taken together, we demonstrated a minimally invasive methodology to monitor zebrafish heart function, electrical activities, and regeneration in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R. Arnaout, T. Ferrer, J. Huisken, K. Spitzer, D. Y. Stainier, M. Tristani-Firouzi, and N. C. Chi, “Zebrafish model for human long QT syndrome,” Proc Natl Acad Sci U S A, vol. 104, pp. 11316-21, Jul 3 2007. doi:10.1073/pnas.0702724104

    Article  PubMed  CAS  Google Scholar 

  2. R. O. Becker, S. Chapin, and R. Sherry, “Regeneration of the ventricular myocardium in amphibians,” Nature, vol. 248, pp. 145-7, Mar 8 1974. doi:10.1038/248145a0

    Article  PubMed  CAS  Google Scholar 

  3. E. Braunwald, D. P. Zipes, P. Libby, and R. Bonow, Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 7th ed. Philadelphia: Saunders Company, 2004.

    Google Scholar 

  4. E. E. Braunwald, D. P. E. Zipes, P. E. Libby, and R. E. Bonow, “Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine,” 5 edition ed Philadelphia: Saunders Company, 2004, p. 114.

    Google Scholar 

  5. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer. Upper Saddle River, NJ: Prentice-Hall, 1997.

    Google Scholar 

  6. I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: Soc. Indus. Appl. Math., 1992.

    Google Scholar 

  7. D. L. Donoho 1995 “De-noising by soft-thresholding,” IEEE Trans. Inform. Theory 41:613-627. doi:10.1109/18.382009

    Article  Google Scholar 

  8. A. S. Forouhar, A. Hickerson, M. Liebling, A. Moghaddam, J. Lu, H.-J. Tsai, J. R. Hove, S. E. Fraser, M. Dickinson, and M. Gharib, “The embryonic vertebrate heart tube is a dynamic suction pump,” Science, vol. 312, pp. 751-753, 2006. doi:10.1126/science.1123775

    Article  PubMed  CAS  Google Scholar 

  9. A. S. Forouhar, J. R. Hove, C. Calvert, J. Flores, H. Jadvar, and M. Gharib, “Electrocardiographic characterization of embryonic zebrafish,” Conf Proc IEEE Eng Med Biol Soc, vol. 5, pp. 3615-7, 2004.

    PubMed  CAS  Google Scholar 

  10. Glantz, S. A. Primer of Biostatistics, 6th ed. McGraw-Hill, pp. 386–388, 2005.

  11. Hahn, C., and M. A. Schuwartz. The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28:2101–2107, 2008. doi:10.1161/ATVBAHA.108.165951

  12. Hove, J. R., R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid-forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177, 2003. doi:10.1038/nature01282

    Google Scholar 

  13. D. J. Milan, I. L. Jones, P. T. Ellinor, and C. A. MacRae, “In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation,” Am J Physiol Heart Circ Physiol, vol. 291, pp. H269-73, Jul 2006. doi:10.1152/ajpheart.00960.2005

    Article  PubMed  CAS  Google Scholar 

  14. D. J. Milan and C. A. MacRae, “Animal models for arrhythmias,” Cardiovasc Res, vol. 67, pp. 426-37, Aug 15 2005. doi:10.1016/j.cardiores.2005.06.012

    Article  PubMed  CAS  Google Scholar 

  15. Nusslein-Volhard, C., and R. Dahm (Editors), Zebrafish. New York: Oxford University Press, 2002.

  16. J. O. Oberpriller and J. C. Oberpriller, “Response of the adult newt ventricle to injury,” J Exp Zool, vol. 187, pp. 249-53, Feb 1974. doi:10.1002/jez.1401870208

    Article  PubMed  CAS  Google Scholar 

  17. K. D. Poss, L. G. Wilson, and M. T. Keating, “Heart regeneration in zebrafish,” Science, vol. 298, pp. 2188-90, Dec 13 2002. doi:10.1126/science.1077857

    Article  PubMed  CAS  Google Scholar 

  18. A. Raya, A. Consiglio, Y. Kawakami, C. Rodriguez-Esteban, and J. C. Izpisua-Belmonte, “The zebrafish as a model of heart regeneration,” Cloning Stem Cells, vol. 6, pp. 345–51, 2004. doi:10.1089/clo.2004.6.345

    Article  PubMed  CAS  Google Scholar 

  19. J. L. Reeve, A. M. Duffy, T. O’Brien, and A. Samali, “Don’t lose heart–therapeutic value of apoptosis prevention in the treatment of cardiovascular disease.,” J Cell Mol Med., vol. 9, pp. 609-22, 2005. doi:10.1111/j.1582-4934.2005.tb00492.x

    Article  PubMed  CAS  Google Scholar 

  20. D. Sedmera, M. Reckova, A. deAlmeida, M. Sedmerova, M. Biermann, J. Volejnik, A. Sarre, E. Raddatz, R. A. McCarthy, R. G. Gourdie, and R. P. Thompson, “Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts,” Am J Physiol Heart Circ Physiol, vol. 284, pp. H1152-60, Apr 2003.

    PubMed  CAS  Google Scholar 

  21. D. Y. Stainier, “Zebrafish genetics and vertebrate heart formation,” Nat Rev Genet, vol. 2, pp. 39-48, Jan 2001. doi:10.1038/35047564

    Article  PubMed  CAS  Google Scholar 

  22. Szilagyi, S. M., and L. Szilagyi. Wavelet transform and neural-network-based adaptive filtering for QRS detection. In: Proceedings of the 22nd Annual International Conference of the IEEE, Vol. 2, 2000, pp. 1267–1270.

Download references

Acknowledgments

The authors would like to express gratitude to Calum MacRae from Massachusetts General Hospital, Harvard Medical School for his advice on zebrafish ECG measurement. This project was supported by USC Zumberge Interdisciplinary Research Award (TKH), and NHLB 083015 (TKA), NHLBI 068689 (TKH), and AHA GIA 0655051Y (TKH), AHA Science Development Award (CLL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai.

Additional information

P. Sun, Y. Zhang, and F. Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, P., Zhang, Y., Yu, F. et al. Micro-Electrocardiograms to Study Post-Ventricular Amputation of Zebrafish Heart. Ann Biomed Eng 37, 890–901 (2009). https://doi.org/10.1007/s10439-009-9668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9668-3

Keywords

Navigation