Skip to main content

A Model of Electrical Conduction in Cardiac Tissue Including Fibroblasts

Abstract

Fibroblasts are abundant in cardiac tissue. Experimental studies suggested that fibroblasts are electrically coupled to myocytes and this coupling can impact cardiac electrophysiology. In this work, we present a novel approach for mathematical modeling of electrical conduction in cardiac tissue composed of myocytes, fibroblasts, and the extracellular space. The model is an extension of established cardiac bidomain models, which include a description of intra-myocyte and extracellular conductivities, currents and potentials in addition to transmembrane voltages of myocytes. Our extension added a description of fibroblasts, which are electrically coupled with each other and with myocytes. We applied the extended model in exemplary computational simulations of plane waves and conduction in a thin tissue slice assuming an isotropic conductivity of the intra-fibroblast domain. In simulations of plane waves, increased myocyte–fibroblast coupling and fibroblast–myocyte ratio reduced peak voltage and maximal upstroke velocity of myocytes as well as amplitudes and maximal downstroke velocity of extracellular potentials. Simulations with the thin tissue slice showed that inter-fibroblast coupling affected rather transversal than longitudinal conduction velocity. Our results suggest that fibroblast coupling becomes relevant for small intra-myocyte and/or large intra-fibroblast conductivity. In summary, the study demonstrated the feasibility of the extended bidomain model and supports the hypothesis that fibroblasts contribute to cardiac electrophysiology in various manners.

This is a preview of subscription content, access via your institution.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11

Notes

  1. The reader is referred to work of Henriquez,18 page 22 for assumptions underlying our Eq. (22) and page 14–21 for extensions for other configurations.

References

  1. C. P. Adler, W. P. Ringlage, and N. Böhm. DNS-Gehalt und Zellzahl in Herz und Leber von Kindern. Pathol Res Pract, 127(1–2):25–41, 1981.

    Google Scholar 

  2. Antzelevitch, C., and A. Lukas, Reflection and circus movement reentry in isolated atrial and ventricular tissue, chapter 11. In: Electrophysiology and Pharmacology of the Heart, edited by K. H. Dangman and D. S. Miura. New York: Marcel Dekker, 1991, pp. 251–75.

  3. Balay, S., K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, B. F. Smith, and H. Zhang. PETSc web page. http://www.mcs.anl.gov/petsc, 2001.

  4. I. Banerjee, J. W. Fuseler, R. L. Price, T. K. Borg, and T. A. Baudino. Determination of cell types and numbers during development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol, 293:H1883–91, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. I. Banerjee, K. Yekkala, T. K. Borg, and T. A. Baudino. Dynamic interactions between myocytes, fibroblasts and extracellular matrix. Ann N Y Acad Sci, 1080:76–84, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. T. A. Baudino, W. Carver, W. Giles, and T. K. Borg. Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol, 291(3):H1015–26, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. R. A. Bouchard, R. B. Clark, and W. R. Giles. Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Circ. Res., 76:790–801, 1995.

    PubMed  CAS  Google Scholar 

  8. C. Cabo and R. C. Barr. Reflection After Delayed Excitation in a Computer Model of a Single Fiber. Circ. Res., 71:260–70, 1992.

    PubMed  CAS  Google Scholar 

  9. P. Camelliti, C. R. Green, I. LeGrice, and P. Kohl. Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res, 94(6):828–35, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. W. E. Cascio, H. Yang, T. A Johnson, B. J. Muller-Borer, and J. J. Lemasters. Electrical properties and conduction in perfused papillary muscle. Circ Res, 89:807–814, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. C. Casella and B. Taccardi. The spread of excitation over short distances in heart muscle. In B. Taccardi and G. Marchetti, editors, Electrophysiology of the Heart, pp. 153–62. Pergamon Press, Oxford, London, Edinburgh, New York, 1963.

    Google Scholar 

  12. P. F. Cranefield and B. F. Hoffmann. Conduction of the cardiac impulse: II. summation and inhibition. Circ. Res., 28:220–33, 1971.

    PubMed  CAS  Google Scholar 

  13. P. F. Cranefield, H. O. Klein, and B. F. Hoffmann. Conduction of the cardiac impulse: I. Delay, block, and one-way block in depressed Purkinje fibers. Circulation, 28:199–219, 1971.

    CAS  Google Scholar 

  14. P. F. Cranefield, A. L. Wit, and B. F. Hoffmann. Conduction of the cardiac impulse: III. Characteristics of slow conduction. Circ. Res., 59:227–46, 1971.

    Google Scholar 

  15. J. Fleischhauer, L. Lehmann, and A. G. Kĺeber. Electrical resistances of interstitial and microvascular space a determinants of the extracellular electrical field and velocity of propagation in ventricular myocardium. Circulation, 92:587–94, 1995.

    PubMed  CAS  Google Scholar 

  16. J. S. Frank and G. A. Langer. The myocardial interstitium: its structure and its role in ionic exchange. J Cell Biol, 60:586–601, 1974.

    Article  PubMed  CAS  Google Scholar 

  17. G. Gaudesius, M. Miragoli, S. P. Thomas, and S. Rohr. Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circ. Res., 93:421–8, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. C. S. Henriquez. Simulating the electrical behaviour of cardiac tissue using the bidomain model. Crit Rev Biomed Eng, 21(1):1–77, 1993.

    PubMed  CAS  Google Scholar 

  19. C. S. Henriquez, A. L. Muzikant, and C. K. Smoak. Anisotropy, Fiber Curvature and Bath Loading Effects on Activation in Thin and Thick Cardiac Tissue Preparations: Simulations in a Three-Dimensional Bidomain Model. J Cardiovasc Electrophysiol, 7(5):424–44, May 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Henriquez, C. S., and R. Plonsey. A bidomain model for simulating propagation in multicellular cardiac tissue. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 4, 1989, p. 1266

  21. J. W. Holmes, T. K. Borg, and J. W. Covell. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng, 7:223–53, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. N. Hooke, C. S. Henriquez, P. Lanzkron, and D. Rose. Linear Algebraic Transformations of the Bidomain Equations: Implications to Numerical Methods. Crit Rev Biomed Eng, 120:127–145, 1992.

    Google Scholar 

  23. V. Jacquemet and C. S. Henriquez. Modeling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation. Europace, 9:29–37, 2007.

    Article  Google Scholar 

  24. V. Jacquemet and C. S. Henriquez. Loading Effect of fibroblast–myocyte Coupling on Resting Potential, Impulse Propagation and Repolarization: Insights from a Microstructure Model. Am J Physiol, 294(5):H2040–52, 2008.

    CAS  Google Scholar 

  25. J. P. Keener and J. Sneyed. Mathematical physioloyg. Springer, Berlin, Heidelberg, New York, 1997.

    Google Scholar 

  26. P. Kohl and P. Camelliti. Cardiac myocyte-nonmyocyte electrotonic coupling: Implications for ventricular arrhythmogenesis. Heart Rhythm, 4(2):233–235, 2007.

    Article  PubMed  Google Scholar 

  27. P. Kohl, P. Camelliti, F. L. Burton, and G. L. Smith. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol, 38:45–50, 2005.

    Article  PubMed  Google Scholar 

  28. Z. Liu, D. R. Hilbelink, W. B. Crockett, and A. M. Gerdes. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ. Res., 69:52–8, 1991.

    PubMed  CAS  Google Scholar 

  29. MacCannell, K. A., H. Bazzazi, L. Chilton, Y. Shibukawa, R. B. Clark, and W. R. Giles. A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts. Biophys J., 92:4121–4132, 2007.

    Google Scholar 

  30. S. V. Pandit, R. B. Clark, W. R. Giles, and S. S. Demir. A Mathematical Model of Action Potential Heterogeneity in Adult Left Ventricular Myocytes. Biophys J, 81:3029–51, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. A. S. Parfenov, V. Salnikov, W. J. Lederer, and V. Ludyanenko. Aqueous diffusion pathways as a part of the ventricular ultrastructure. Biophys J, 90:1107–19, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Plank, G., M. Liebmann, R. Weber dos Santos, E. J. Vigmond, and G. Haase. Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng., 54(4):585–596, 2007.

    Article  PubMed  Google Scholar 

  33. R. Plonsey and R. C. Barr. Mathematical Modeling of Electrical Activity of the Heart. J Electrocardiol, 20(3):219–26, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. P. I. Polimeni. Extracellular space and ionic distribution in rat ventricle. Am J Physiol, 227:676–83, 1974.

    PubMed  CAS  Google Scholar 

  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, New York, Melbourne, 2 edition, 1992.

    Google Scholar 

  36. C. Ramanathan, P. Jia, R. Ghanem, K. Ryu, and Y. Rudy. Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA, 103(16):6309–14, April 2006.

    Article  PubMed  CAS  Google Scholar 

  37. D. E. Roberts and A. M. Scher. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res., 50:342–51, 1982.

    PubMed  CAS  Google Scholar 

  38. M. B. Rook, A. C. G. van Ginneken, B. de Jonge, A. El Aoumari, D. Gros, and H. J. Jongsma. Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. Am J Physiol, 263:C959–77, 1992.

    PubMed  CAS  Google Scholar 

  39. M. R. Rosen, M. J. Legato, and R. M. Weiss. Developmental Changes in Impulse Propagation in the Canine Heart. Am J Physiol, 240:H546–54, 1981.

    PubMed  CAS  Google Scholar 

  40. B. J. Roth. Action Potential Propagation in a Thick Strand of Cardiac Muscle. Circ. Res., 68:162–73, 1991.

    PubMed  CAS  Google Scholar 

  41. Y. Rudy. Conductive bridges in cardiac tissue: a beneficial role or an arrhythmogenic substrate. Circ. Res., 94:709–11, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Sachse, F. B. Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics, vol. 2966 of Lecture Notes in Computer Science. Heidelberg: Springer, 2004.

  43. Sachse, F. B., and J. A. Abildskov. Electrophysiological modeling of cardiac fibroblasts and their interaction with myocytes. In Proc. BMES Annual Fall Meeting, 2006, p. 235.

  44. Sachse, F. B., M. J. Cole, and J. G. Stinstra. A software framework for solving bioelectrical field problems based on finite elements. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1, 2006, pp. 2554–2557.

  45. F. B. Sachse, A. P. Moreno, and J. A. Abildskov. Electrophysiological Modeling of Fibroblasts and Their Interaction with Myocytes. Ann Biomed Eng, 36(1):41–56, 2008.

    Article  PubMed  Google Scholar 

  46. T. Sano, N. Takayama, and T. Shimamoto. Directional Difference of Conduction Velocity in the Cardiac Ventricular Syncytium Studied by Microelectrodes. Circ. Res., 7:262–7, 1959.

    PubMed  CAS  Google Scholar 

  47. N. G. Sepulveda and J. P. Wikswo. Bipolar Stimulation of Cardiac Tissue Using an Anisotropic Bidomain Model. J Cardiovasc Electrophysiol, 5(3):258–67, May 1994.

    Article  PubMed  CAS  Google Scholar 

  48. Simelius, K., J. Nenonen, and B. M. Horacek. Simulation of anisotropic propagation in the myocardium with a hybrid bidomain model. In: Functional Imaging and Modeling of the Heart, Lecture Notes in Computer Science, vol. 2230, edited by T. Katila, I. E. Magnin, P. Clarysse, J. Montagnat, and J. Nenonen. Berlin, Heidelberg: Springer, 2001, pp. 140–147

  49. B. Stroustrup. The C++ programming language. Addison-Wesley, Boston, 3 edition, 1997.

    Google Scholar 

  50. B. Taccardi, E. Macchi, R. L. Lux, P. E. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister. Effect of myocardial fiber direction on epicardial potentials. Circulation, 90:3076–90, 1994.

    PubMed  CAS  Google Scholar 

  51. B. Taccardi and G. Marchetti. Distribution of heart potentials on the body surface and in artificial conducting media. In B. Taccardi and G. Marchetti, editors, Electrophysiology of the Heart, pp. 257–80. Pergamon Press, Oxford, London, Edinburgh, New York, 1963.

    Google Scholar 

  52. Tung, L. A bidomain model for describing ischemic myocardial d-c potentials. PhD thesis, Massachusetts Institute of Technology, 1978.

  53. C. Vasquez, A. P. Moreno, and E. J. Berbari. Modeling Fibroblast-Mediated Conduction in the Ventricle. Proc Computers in Cardiology, 31:349–52, 2004.

    Google Scholar 

  54. E. J. Vigmond, F. N. Aguel, and A. Trayanova. Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng, 49(11):1260–9, 2002.

    Article  PubMed  Google Scholar 

  55. A. L. Wit, P. F. Cranefield, and B. F. Hoffman. Slow Conduction and Reentry in the Ventricular Conduction System: II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ. Res., 30:11–22, 1972.

    PubMed  CAS  Google Scholar 

  56. A. L. Wit, B. F. Hoffman, and P. F. Cranefield. Slow Conduction and Reentry in the Ventricular Conduction System: I. Return extrasystole in the canine Purkinje fibers. Circ. Res., 30(1):1–10, 1972.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Richard A. and Nora Eccles Fund for Cardiovascular Research, awards from the Nora Eccles Treadwell Foundation (FBS, APM, JAA), and NIH/NHLBI, HL63969 (APM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Sachse.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sachse, F.B., Moreno, A.P., Seemann, G. et al. A Model of Electrical Conduction in Cardiac Tissue Including Fibroblasts. Ann Biomed Eng 37, 874–889 (2009). https://doi.org/10.1007/s10439-009-9667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9667-4

Keywords

  • Cardiac electrophysiology
  • Computational simulation
  • Fibroblast–myocyte interaction
  • Electrical signaling
  • Bidomain model of electrical conduction