Annals of Biomedical Engineering

, Volume 37, Issue 1, pp 176–191

Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation

Article

Abstract

Quantitative electroencephalographic (EEG) analysis is very useful for diagnosing dysfunctional neural states and for evaluating drug effects on the brain, among others. However, the bidirectional contamination between electrooculographic (EOG) and cerebral activities can mislead and induce wrong conclusions from EEG recordings. Different methods for ocular reduction have been developed but only few studies have shown an objective evaluation of their performance. For this purpose, the following approaches were evaluated with simulated data: regression analysis, adaptive filtering, and blind source separation (BSS). In the first two, filtered versions were also taken into account by filtering EOG references in order to reduce the cancellation of cerebral high frequency components in EEG data. Performance of these methods was quantitatively evaluated by level of similarity, agreement and errors in spectral variables both between sources and corrected EEG recordings. Topographic distributions showed that errors were located at anterior sites and especially in frontopolar and lateral–frontal regions. In addition, these errors were higher in theta and especially delta band. In general, filtered versions of time-domain regression and of adaptive filtering with RLS algorithm provided a very effective ocular reduction. However, BSS based on second order statistics showed the highest similarity indexes and the lowest errors in spectral variables.

Keywords

Electroencephalography (EEG) Electrooculography (EOG) Ocular artifacts Regression analysis Adaptive filtering Blind source separation (BSS) Independent component analysis (ICA) 

References

  1. 1.
    Anderer P., H. V. Semlitsch, B. Saletu, M. J. Barbanoj 1992 Artifact processing in topographic of electro-encephalographic activity in neuropsychopharmacology. Psychiat. Res. 45, 79–93. doi:10.1016/0925-4927(92)90002-L CrossRefGoogle Scholar
  2. 2.
    Barbati G., C. Porcaro, F. Zappasodi, P. M. Rossini, F. Tecchio 2004 Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin. Neurophysiol. 115, 1220–1232. doi:10.1016/j.clinph.2003.12.015 PubMedCrossRefGoogle Scholar
  3. 3.
    Bell A. J., T. J. Sejnowski 1995 An information maximization approach to blind separation and blind deconvolution. Neural. Comput. 7, 1129–1159. doi:10.1162/neco.1995.7.6.1129 PubMedCrossRefGoogle Scholar
  4. 4.
    Belouchrani A., K. Abed-Meraim, J. F. Cardoso, E. Moulines 1997 A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45, 434–444. doi:10.1109/78.554307 CrossRefGoogle Scholar
  5. 5.
    Bland J. M., D. G. Altman 1996 Measurement error and correlation coefficients. Br. Med. J. 313, 41–42Google Scholar
  6. 6.
    Cichocki, A., S. Amari, K. Siwek, T. Tanaka, et al. ICALAB Toolboxes for Signal and Image Processing. Available from http://www.bsp.brain.riken.jp/ICALAB/. Accessed 10 March 2008
  7. 7.
    Croft R. J., R. J. Barry 2000 Removal of ocular artifact from the EEG: a review. Neurophysiol. Clin. 30, 5–19. doi:10.1016/S0987-7053(00)00055-1 PubMedCrossRefGoogle Scholar
  8. 8.
    Delorme A., S. Makeig 2004 EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009 PubMedCrossRefGoogle Scholar
  9. 9.
    Delorme A., T. Sejnowski, S. Makeig 2007 Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34, 1443–1449. doi:10.1016/j.neuroimage.2006.11.004 PubMedCrossRefGoogle Scholar
  10. 10.
    Gasser T., L. Sroka, J. Möcks 1985 The transfer of EOG activity into the EEG for eyes open and closed. Electroencephalogr. Clin. Neurophysiol. 61, 181–193. doi:10.1016/0013-4694(85)91058-2 PubMedCrossRefGoogle Scholar
  11. 11.
    Gasser T., P. Ziegler, F. Gattaz 1992 The deleterious effect of ocular artifacts on the quantitative EEG, and a remedy. Eur. Arch. Psy. Clin. N. 241, 241–252. doi:10.1007/BF02191960 CrossRefGoogle Scholar
  12. 12.
    He P., G. Wilson, C. Russell 2004 Removal of ocular artifacts from electro-encephalography by adaptive filtering. Med. Biol. Eng. Comp. 42, 407–412. doi:10.1007/BF02344717 CrossRefGoogle Scholar
  13. 13.
    He P., G. Wilson, C. Russell, M. Gerschutz 2007 Removal of ocular artifacts from the EEG: a comparison between time-domain regression and adaptive filtering method using simulated data. Med. Biol. Eng. Comp. 45, 495–503. doi:10.1007/s11517-007-0179-9 CrossRefGoogle Scholar
  14. 14.
    Hoyer D., B. Pompe, K. H. Chon, H. Hardraht, C. Wicher, U. Zwiener 2005 Mutual information function assesses autonomic information flow of heart rate dynamics at different time scales. IEEE Trans. Bio-Med. Eng. 52, 584–592CrossRefGoogle Scholar
  15. 15.
    Hyvärinen A., E. Oja 1997 A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492. doi:10.1162/neco.1997.9.7.1483 CrossRefGoogle Scholar
  16. 16.
    Hyvärinen A., J. Karhunen, E. Oja 2001 Independent Component Analysis. New York: John Wiley & Sons, 481 ppGoogle Scholar
  17. 17.
    Jackson, L. B. FIR filter design techniques. In: Digital Filters and Signal Processing, 3rd ed. Boston: Kluwer Academic Publishers, 1995, pp. 301–307Google Scholar
  18. 18.
    Jung T.-P., S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, T. J. Sejnowski 2000 Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 111, 1745–1758PubMedCrossRefGoogle Scholar
  19. 19.
    Kierkels J. J. M., G. J. M. van Boxtel, L. L. M. Vogten 2006 A model-based objective evaluation of eye movement correction in EEG recordings. IEEE Trans. Bio-Med. Eng. 53, 246–253CrossRefGoogle Scholar
  20. 20.
    Lins O. G., T. W. Picton, P. Berg, M. Scherg 1993 Ocular artifacts in recording EEGs and event-related potentials II: source dipoles and source components. Brain Topogr. 6, 65–78. doi:10.1007/BF01234128 PubMedCrossRefGoogle Scholar
  21. 21.
    Ljung L. 1999 System Identification—Theory for the User. 2nd ed. Upper Saddle River, NJ: PTR Prentice Hall, 609 ppGoogle Scholar
  22. 22.
    Makeig S., A. J. Bell, T.-P. Jung, T. J. Sejnowski 1996 Independent component analysis of electro-encephalographic data. Adv. Neural Inf. Process. Syst. 8, 145–151Google Scholar
  23. 23.
    Malmivuo, J., and R. Plonsey. Volume source and volume conductor. In: Bioelectromagnetism. Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press, 1995, pp. 133–147Google Scholar
  24. 24.
    Nunez P. L., R. Srinivasan 2006 Electric Fields of the Brain. 2nd ed. New York: Oxford University PressGoogle Scholar
  25. 25.
    Romero S., M. A. Mañanas, M. J. Barbanoj 2008 A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case. Comput. Biol. Med. 38, 348–360. doi:10.1016/j.compbiomed.2007.12.001 PubMedCrossRefGoogle Scholar
  26. 26.
    Saletu B., P. Anderer, K. Kinsperger, J. Grünberger 1987 Topographic brain mapping of EEG in neuropsychopharmacology—Part II. Clinical applications (pharmaco EEG mapping). Meth. Find. Exp. Clin. Pharmacol. 9, 385–408Google Scholar
  27. 27.
    Schlögl A., C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb, G. Pfurtscheller 2007 A fully automated correction method of EOG artifacts in EEG recordings. Clin. Neurophyiol. 118, 98–104. doi:10.1016/j.clinph.2006.09.003 CrossRefGoogle Scholar
  28. 28.
    Semlitsch H. W., P. Anderer, P. Schuster, O. Presslich 1986 A solution for reliable and valid reduction of ocular artifacts applied to the P300 ERP. Psychophysiology 23, 695–703. doi:10.1111/j.1469-8986.1986.tb00696.x PubMedCrossRefGoogle Scholar
  29. 29.
    Sörnmo, L., and P. Laguna. EEG signal processing. In: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier Academic Press, 2005, pp. 55–180Google Scholar
  30. 30.
    Vasegui, S. V. Adaptive filters. In: Advanced Digital Signal Processing and Noise Reduction, 2nd ed. Chichester: John Wiley & Sons, 2000Google Scholar
  31. 31.
    Vigario R. N. 1997 Extraction of ocular artifacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol. 103, 395–404. doi:10.1016/S0013-4694(97)00042-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Wallstrom G. L., R. E. Kass, A. Miller, J. F. Cohn, A. F. Nathan 2004 Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. Int. J. Psychophysiol. 53, 105–119. doi:10.1016/j.ijpsycho.2004.03.007 PubMedCrossRefGoogle Scholar
  33. 33.
    Woestenburg J. C., M. N. Verbaten, J. L. Slanger 1983 The removal of eye-movement artifact from the EEG by regression analysis in the frequency domain. Biol. Psychol. 16, 127–147. doi:10.1016/0301-0511(83)90059-5 PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of Automatic Control (ESAII), Biomedical Engineering Research CenterUniversitat Politecnica de Catalunya (UPC)BarcelonaSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain
  3. 3.Drug Research Center (CIM), Research Institute of Sant Pau Hospital, Department of Pharmacology and TherapeuticsUniversitat Autonoma de Barcelona (UAB)BarcelonaSpain

Personalised recommendations