Skip to main content
Log in

Fast Optical Transillumination Tomography with Large-Size Projection Acquisition

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Techniques such as optical coherence tomography and diffuse optical tomography have been shown to effectively image highly scattering samples such as tissue. An additional modality has received much less attention: Optical transillumination (OT) tomography, a modality that promises very high acquisition speed for volumetric scans. With the motivation to image tissue-engineered blood vessels for possible biomechanical testing, we have developed a fast OT device using a collimated, noncoherent beam with a large diameter together with a large-size CMOS camera that has the ability to acquire 3D projections in a single revolution of the sample. In addition, we used accelerated iterative reconstruction techniques to improve image reconstruction speed, while at the same time obtaining better image quality than through filtered backprojection. The device was tested using ink-filled polytetrafluorethylene tubes to determine geometric reconstruction accuracy and recovery of absorbance. Even in the presence of minor refractive index mismatch, the weighted error of the measured radius was <5% in all cases, and a high linear correlation of ink absorbance determined with a photospectrometer of R 2 = 0.99 was found, although the OT device systematically underestimated absorbance. Reconstruction time was improved from several hours (standard arithmetic reconstruction) to 90 s per slice with our optimized algorithm. Composed of only a light source, two spatial filters, a sample bath, and a CMOS camera, this device was extremely simple and cost-efficient to build.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Allaire E., C. Guettier, P. Bruneval, D. Plissonnier, J. B. Michel 1994 Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J. Vasc. Surg. 19:446–456

    PubMed  CAS  Google Scholar 

  2. Andersen A. H., A. C. Kak 1984 Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm. Ultrason.Imag. 6:81–94

    Article  CAS  Google Scholar 

  3. Anonymous. Arteriosclerosis: Report of the Working Group on Arteriosclerosis of the National Heart, Lung, and Blood Institute, Vol. 2. Washington, D.C.: U.S. Department of Health and Human Services, Government Printing Office, 1981

  4. Bellemann M. E., T. Baier, B. Seitz, H.-G. Walther 2002 Development of a laser-optical tomograph for demonstration of CT imaging without ionizing radiation. Biomed. Tech. (Berl) 47: 467–469

    Google Scholar 

  5. Charlesworth P. M., D. C. Brewster, R. C. Darling, J. G. Robison, J. W. Hallet 1985 The fate of polytetrafluoroethylene grafts in lower limb bypass surgery: a six year follow-up. Br. J. Surg. 72:896–899

    Article  PubMed  CAS  Google Scholar 

  6. Considine P. S. 1966 Effects of coherence on imaging systems. J. Opt. Soc. Am. 56:1001–1009

    Google Scholar 

  7. Dardik H., N. Miller, A. Dardik, I. Ibrahim, B. Sussman, S. M. Berry, F. Wolodiger, M. Kahn, I. Dardik 1988 A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J. Vasc. Surg. 7: 336–346

    Article  PubMed  CAS  Google Scholar 

  8. Di Bella E. V. R., A. B. Barclay, R. L. Eisner, R. W. Schafer 1996 A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans. Nucl. Sci. 43:3370–3376

    Article  Google Scholar 

  9. Doran S. J., K. K. Koerkamp, M. A. Bero, P. Jenneson, E. J. Morton, W. B. Gilboy 2001 A CCD-based optical CT scanner for high-resolution 3D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results. Phys. Med. Biol. 46: 3191–3213

    Article  PubMed  CAS  Google Scholar 

  10. Gladish J. C., G. Yao, N. L’Heureux, M. Haidekker 2005 Optical transillumination tomography for imaging of tissue-engineered blood vessels. Ann. Biomed. Eng. 33:322–326

    Article  Google Scholar 

  11. Guidoin R., H. P. Noel, M. Marois, L. Martin, F. Laroche, L. Beland, R. Cote, C. Gosselin, J. Descotes, E. Chignier, P. Blais 1980 Another look at the Sparks-Mandril arterial graft precursor for vascular repair. Pathology by scanning electron microscopy. Biomater. Med. Device Artif. Organs 8:145–167

    CAS  Google Scholar 

  12. Haidekker M. A. 2005 A hands-on model-computed tomography scanner for teaching biomedical imaging principles. Int. J. Eng. Ed. 21:327–334

    Google Scholar 

  13. Haidekker M. A. 2005 Optical transillumination tomography with tolerance against refraction mismatch. Comput. Method Progr. Biomed. 80:225–235

    Article  Google Scholar 

  14. Hallin R. W., W. R. Sweetman 1976 The Sparks’ mandril graft. A seven year follow-up of mandril grafts placed by Charles H. Sparks and his associates. Am. J. Surg. 132: 221–223

    Article  PubMed  CAS  Google Scholar 

  15. Hudson H., R. Larkin 1994 Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imag. 13: 601–609

    Article  CAS  Google Scholar 

  16. Kak A. C., M. Slaney 1999 Principles of Computerized Tomographic Imaging. New York, IEEE Press

    Google Scholar 

  17. L’Heureux N., L. Germain, R. Labbe, F. A. Auger 1993 In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17: 499–509

    Article  PubMed  CAS  Google Scholar 

  18. L’Heureux N., S. Pâquet, R. Labbé, L. Germain, F. A. Auger 1998 A completely biological tissue-engineered human blood vessel. FASEB J. 12: 47–56

    PubMed  CAS  Google Scholar 

  19. Roberts P. N., B. R. Hopkinson 1977 The Sparks mandril in femoropopliteal bypass. Br. Med. J. 2: 1190–1191

    Article  PubMed  CAS  Google Scholar 

  20. Schleicher E., M. Jesinghaus, G. Hildebrandt, K. Liebrecht, U. Hampel, R. Freyer 1998 Optischer Labortomograph für die Lehre und Forschung [Optical laboratory tomograph for education and research]. Biomed. Tech. (Berl) 43 Suppl: 480–481

    Article  Google Scholar 

  21. Sharpe J., U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, D. Davidson 2002 Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545

    Article  PubMed  CAS  Google Scholar 

  22. Siddon R. L. 1985 Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 12:252–255

    Article  PubMed  CAS  Google Scholar 

  23. Van de Pavoordt H. D., B. C. Eikelboom, R. De Geest, F. E. Vermeulen 1986 Results of prosthetic grafts in femoro-crural bypass operations as compared to autogenous saphenous vein grafts. Neth. J. Surg. 38:177–179

    PubMed  Google Scholar 

  24. Wang G., M. Jiang 2004 Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART). J. Xray Sci. Technol. 12: 169–177

    Google Scholar 

  25. Xu F., K. Mueller 2005 Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware. IEEE Trans. Nucl. Sci. 52: 654–663

    Article  CAS  Google Scholar 

  26. Yao G., M. A. Haidekker 2005 Transillumination optical tomography of tissue-engineered blood vessels: a Monte-Carlo simulation. Appl. Opt. 44:4265–4271

    Article  PubMed  Google Scholar 

  27. Yeager R. A., R. W. Hobson, Z. Jamil, T. G. Lynch, B. C. Lee, K. Jain 1982 Differential patency and limb salvage for polytetrafluoroethylene and autogenous saphenous vein in severe lower extremity ischemia. Surgery 91: 99–103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the National Institutes of Health, grant R21 HL081308. We would like to thank Zeus, Inc. for providing PTFE tube samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Haidekker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HM., Xia, J. & Haidekker, M.A. Fast Optical Transillumination Tomography with Large-Size Projection Acquisition. Ann Biomed Eng 36, 1699–1707 (2008). https://doi.org/10.1007/s10439-008-9549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9549-1

Keywords

Navigation