Skip to main content
Log in

Mechanics of Muscle Injury Induced by Lengthening Contraction

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Skeletal muscle is composed of two primary structural components, contractile myofibrils and extracellular matrix (ECM). The myofibrils adhere to the surrounding endomysium through the basal lamina, sarcolemma and dystrophin, and dystrophin associated glycoprotein (DAG). In this study, a novel shear lag type model is developed to investigate the mechanics of injury to the single muscle fiber due to lengthening contractions. A single muscle fiber is considered as a composite system with reinforced by the contractile myofibrils. The lateral linkages between myofibril and endomysium is modeled as a zero thickness coating layer, that could be injured under high interfacial shear stress. The results shows that the degree of the muscle injury is correlated to the magnitude of the passive stretch during the contraction. Dystrophic muscles are more susceptible to contraction induced injury due to lack of DAG complex in lateral linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allen D. G. (2001) Eccentric muscle damage: mechanisms of early reduction of force. Acta Physiol. Scand. 171:311–319

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong R. B., Ogilive R. W., Schwane J. A. (1983) Eccentric exercise-induced injury to rat skeletal muscle. J. Appl. Physiol. 54:80–93

    PubMed  CAS  Google Scholar 

  3. Brooks S. V., Faulkner J. A. (1994) Isometric, shortening and lengthening contractions of muscle fiber segments from adult and old mice. Am. J. Physiol. 267:C507–C513

    PubMed  CAS  Google Scholar 

  4. Brooks S. V., Zebra E., Faulkner J. A. (1995) Injury to fibres after single stretches of passive and maximally stimulated muscles in mice. J. Physiol. (Lond.) 488:459–469

    CAS  Google Scholar 

  5. Consolino C. M., Brooks S. V. (2004) Susceptibility to sarcomere injury induced by single stretches of maximally activated muscles of mdx mice. J. Appl. Physiol. 96:633–638

    Article  PubMed  Google Scholar 

  6. Cox, H. L. The elasticity and strength of paper or other fibrous materials. Br. J. Appl. Phys. 3:72–79, 1992.

    Google Scholar 

  7. Faulkner, J. A. and S. V. Brooks. Muscle damage induced by contraction: an in situ single skeletal muscle model. In: Muscle Damage, edited by S. Salmons. Oxford: Oxford University Press, 1997, pp. 28–40.

  8. Friden J., Lieber R. L. (1984) Delayed muscle sorness and cytoskeletal alternations: immunocytological study in man. Int. J. Sports Med. 5(1):15–18

    Article  PubMed  CAS  Google Scholar 

  9. Friden J., Lieber R. L. (2001) Eccentric contraction-induced injuries to contractiles and cytoskeletal fiber components. Acta Physiol. Scand. 171(3):321–326

    Article  PubMed  CAS  Google Scholar 

  10. Garrett W. E. (1983) Strains and sprains in athletes. Postgrad. Med. 73:200–209

    PubMed  Google Scholar 

  11. Higuchi H., Yoshioka T., Maruyama K. (1988) Positioning of actin filaments and tension generation in skinned muscle fibers released after stretch beyond overlap of the actin and myosin filament. J. Muscle Res. Cell Motil. 9:199–126

    Article  Google Scholar 

  12. Huijing P. A. (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J. Biomech. 32(4):329–345

    Article  PubMed  CAS  Google Scholar 

  13. Ibraghimov-Beskrovnaya O., Ervasti J. M., Slaughter C. J., Sernett C. A., Campbell K. P. (1992) Primary structure of dystrophin-associated glycoproteins linking dytrophin to the extracellular matrix. Nature 355:696–702

    Article  PubMed  CAS  Google Scholar 

  14. Kaariainen M., Jarvinen M., Jarvinen T. L. N., Rantanen J., Kalimo H. (2000) Relation between myofibers and connective tissue during injury repair. Scand. J. Med. Sci. Sports 10(6):332–337

    Article  PubMed  CAS  Google Scholar 

  15. Kaariainen M., Kaariainen J., Jarvinen T. L. N., Nissinen L., Heino J. (2000) Integrin and dytrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury. Neuromuscul. Disord. 10(2):121–132

    Article  PubMed  CAS  Google Scholar 

  16. Law D. J., Caputo A., Tidball J. G. (1996) Site and mechanics of failure in normal and dystrophin-deficient skeletal muscle. Muscle Nerve 18:216–223

    Article  Google Scholar 

  17. Law D. J., Tidball J. G. (1993) Dystrophin deficiency is associated with myotendinous junction defects in prenecrotic and fully regenerated skeletal muscle. Am. J. Pathol. 142:1513–1523

    PubMed  CAS  Google Scholar 

  18. Lynch G. S., Rafael J. A., Chameberlain J. S., Faulkner J. A. (2000) Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice. Am. J. Physiol. Cell Physiol. 279:c1290–c1294

    PubMed  CAS  Google Scholar 

  19. Magid A., Law D. J. (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230:1280–1282

    Article  PubMed  CAS  Google Scholar 

  20. McCully K. K., Faulkner J. A. (1985) Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol. 59:119–126

    PubMed  CAS  Google Scholar 

  21. Miller W. A. (1997) Rupture of the musculotendinous juncture of the medial head of the gastrocnemius by stretching rigored muscle. Am. J. Sports Meds. 5:191–193

    Article  Google Scholar 

  22. Morgan D. L., Allen D. G. (1999) Early events in stretch-induced muscle damage. Am. Physiol. Soc. 87(6):2007–2015

    CAS  Google Scholar 

  23. Newham D. J., McPhail G., Mills K. R., Edwards R. H. (1983) Ultrastructural changes after concentric and eccentric contractions of human muscle. J. Neurol. Sci. 61(1):109–122

    Article  PubMed  CAS  Google Scholar 

  24. Newham D. J., Mills K. R., Quigley B. M., Edwards R. H. (1983) Pain and fatigue after eccentric contraction. Clin. Sci. 64:54–62

    Google Scholar 

  25. Oakes B. W. (1984) Hamstring muscle injuries. Aust. Fam. Phys. 13:587–591

    CAS  Google Scholar 

  26. Palmer, M. A non-linear hierarchical model of stretch-induced injury to skeletal muscle fibers. Ph.D. thesis, University of Michigan, Ann Arbor, 2004

  27. Pasternak C., Wong S., Elson E. L. (1995) Mechanical function of dystrophin in muscle cells. J. Cell Biol. 128:355–361

    Article  PubMed  CAS  Google Scholar 

  28. Petrof B. J., Shrager J. B., Stedman H. H., Kelly A. M. (1993) Dystrophin protects the sarcolemma from stress developed during muscle contraction. Proc. Natl. Acad. Sci. USA 90(8):3710–3714

    Article  PubMed  CAS  Google Scholar 

  29. Rybakova I. N., Patel J. R., Ervasti J. M. (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J. Cell Biol. 150(5):1209–1214

    Article  PubMed  CAS  Google Scholar 

  30. Sane, S. F. The extracellular matrix. In: Myology, 2nd Edition, edited by A. G. Engel and C. Franzini-Armstrong. New York: McGraw-Hill, Medical Pub. Division, c2004, pp. 242–260.

  31. Stauber W. T. (1989) Eccentric action of muscles: physiology, injury and adaption. Exerc. Sport Sci. Rev. 17:157–185

    PubMed  CAS  Google Scholar 

  32. Tidball J. G., Daniel T. L. (1986) Elastic energy storage in rigored skeletal muscle cells under physiological loading condition. Am. J. Physiol. 250:R56–R64

    PubMed  CAS  Google Scholar 

  33. Tidball G. J., Law D. J. (1991) Dytrophin is required for normal thin filament-membrane associations at myotendinous junctions. Am. J. Pathol. 138:17–21

    PubMed  CAS  Google Scholar 

  34. Tidball G. J., Salem G., Zernicke R. (1993) Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries. J. Appl. Physiol. 74:1280–1286

    PubMed  CAS  Google Scholar 

  35. Warren G. L., Hayes D. A., Lowe D. A., Prior B. M., Armstrong R. B. (1993) Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle. J. Physiol. 464:477–480

    PubMed  CAS  Google Scholar 

  36. Xie D., Waas A. M. (2006) Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng. Fract. Mech. 73:1783–1796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Waas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Wineman, A.S. & Waas, A.M. Mechanics of Muscle Injury Induced by Lengthening Contraction. Ann Biomed Eng 36, 1615–1623 (2008). https://doi.org/10.1007/s10439-008-9547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9547-3

Keywords

Navigation