Skip to main content
Log in

Quantitative Panoramic Imaging of Epicardial Electrical Activity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fluorescent imaging with voltage- and/or calcium-sensitive dyes has revolutionized cardiac physiology research. Here we present improved panoramic imaging for optically mapping electrical activity from the entire epicardium of the Langendorff-perfused rabbit heart. Combined with reconstruction of the 3D heart surface, the functional data can be conveniently visualized on the realistic heart geometry. Methods to quantify the panoramic data set are introduced by first describing a simple approach to mesh the heart in regular grid form. The regular grid mesh provides substrate for easy translation of previously available non-linear dynamics methods for 2D array data. It also simplifies the unwrapping of curved three-dimensional surface to 2D surface for global epicardial visualization of the functional data. The translated quantification methods include activation maps (isochrones), phase maps, phase singularity, and electric stimulus-induced virtual electrode polarization (VEP) maps. We also adapt a method to calculate the conduction velocities on the global epicardial surface by taking the curvature of the heart surface into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bayly P. V., B. H. KenKnight, J. M. Rogers, R. E. Hillsley, R. E. Ideker, W. M. Smith Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans. Biomed. Eng. 45(5): 563–571, 1998. doi:10.1109/10.668746

    Article  PubMed  CAS  Google Scholar 

  2. Bray M. A., S. F. Lin, J. P. Wikswo Three-dimensional surface reconstruction and fluorescent visualization of cardiac activation. IEEE Trans. Biomed. Eng. 47(10): 1382–1391, 2000. doi:10.1109/10.871412

    Article  PubMed  CAS  Google Scholar 

  3. Bray M. A., J. P. Wikswo Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Phys. Rev. E 65(5): 051902, 2002. doi:10.1103/PhysRevE.65.051902

    Article  Google Scholar 

  4. Bray M. A., J. P. Wikswo Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. IEEE Trans. Biomed. Eng. 49 (10): 1086–1093, 2002. doi:10.1109/TBME.2002.803516

    Article  PubMed  Google Scholar 

  5. Cheng Y., K. A. Mowrey, D. R. V. Wagoner, P. J. Tchou, I. R. Efimov Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ. Res. 85: 1056–1066, 1999

    PubMed  CAS  Google Scholar 

  6. Efimov I. R., F. Aguel, Y. Cheng, B. Wollenzier, N. Trayanova Virtual electrode polarization in the far field: implications for external field. Am. J. Physiol. Heart Circ. Physiol. 279: H1055–H1070, 2000

    PubMed  CAS  Google Scholar 

  7. Efimov I. R., Y. Cheng, D. R. V. Wagoner, T. Mazgalev, P. J. Tchou Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ. Res. 82: 918–925, 1998

    PubMed  CAS  Google Scholar 

  8. Fedorov V. V., I. T. Lozinsky, E. A. Sosunov, E. P. Anyukhovsky, M. R. Rosen, C. W. Balke, I. R. Efimov Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit heart. Heart Rhythm 4: 619–626, 2007. doi:10.1016/j.hrthm.2006.12.047

    Article  PubMed  Google Scholar 

  9. Kay M. W., P. M. Amison, J. M. Rogers Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans. Biomed. Eng. 51 (7): 1219–1229, 2004. doi:10.1109/TBME.2004.827261

    Article  PubMed  Google Scholar 

  10. Lin S. F., J. P. Wikswo Panoramic optical imaging of electrical propagation in isolated heart. J. Biomed. Opt. 4(2): 200–207, 1999. doi:10.1117/1.429910

    Article  Google Scholar 

  11. Morad M., G. Salama Optical probes of membrane potential in heart muscle. J. Physiol. 292: 267–295, 1979

    PubMed  CAS  Google Scholar 

  12. Niem W. Robust and fast modeling of 3D natural objects from multiple views. Proc. SPIE 2182: 388–397 1994. doi:10.1117/12.171088

    Article  Google Scholar 

  13. Qu F., C. M. Ripplinger, V. P. Nikolski, C. Grimm, I. R. Efimov Three-dimensional panoramic imaging of cardiac arrhythmias in rabbit heart. J. Biomed. Opt. 12(4): 044019, 2007. doi:10.1117/1.2753748

    Article  PubMed  Google Scholar 

  14. Rogers J. M. Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation. IEEE Trans. Biomed. Eng. 51(1): 56–65, 2004. doi:10.1109/TBME.2003.820341

    Article  PubMed  Google Scholar 

  15. Rogers J. M., G. P. Walcott, J. D. Gladden, S. B. Melnick, M. W. Kay Panoramic optical mapping reveals continuations epicardial reentry during ventricular fibrillation in the isolated swine heart. Biophys. J. 92, 1090–1095, 2007. doi:10.1529/biophysj.106.092098

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor R. Efimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, Q., Ripplinger, C.M., Bayly, P.V. et al. Quantitative Panoramic Imaging of Epicardial Electrical Activity. Ann Biomed Eng 36, 1649–1658 (2008). https://doi.org/10.1007/s10439-008-9539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9539-3

Keywords

Navigation