Skip to main content
Log in

Validation of a Finite Element Model of the Young Normal Lower Cervical Spine

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A Finite Element Model (FEM) of the young adult human cervical spine has been developed as a first step in studying the process of spondylotic degeneration. The model was developed using normal geometry and material properties for the lower cervical spine. The model used a three-zone composite disc annulus to reflect the different material properties of the anterior, posterior, and lateral regions of the annulus. Nonlinear ligaments were implemented with a toe region to help the model achieve greater flexibility at low loads. The model was validated against experimental data for normal, nondegenerated cervical spines tested in flexion and extension, right and left lateral bending, and right and left axial rotation at loads of 0.33, 0.5, 1.0, 1.5, and 2.0 Nm. The model was within in vitro experimental standard deviation corridors 100% of the load range for right and left lateral bending. The model was within 80% of the load response corridors for extension and flexion with a deviation <0.3° from the SD corridors. For axial rotation, the model was within 70% of the SD corridors for left axial rotation within 83% of right axial rotation responses. The deviation from SD corridors for axial rotation was generally <0.2°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Acaroglu E. R., Iatridis J. C., Setton L. A., Foster R. J., Vow V. C., Weidenbaum M., 1995. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20 (24), 2690–2701

    Article  PubMed  CAS  Google Scholar 

  2. Bozic K. J., Keyak J. H., Skinner H. B., Bueff H. U., Bradford D. S., 1994. Three-dimensional finite element modeling of a cervical vertebra: investigation of burst fracture mechanism. J. Spinal Disord. 7, 102–110

    PubMed  CAS  Google Scholar 

  3. Brolin K., Halldin P., 2004. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine 29(4), 376–385

    Article  PubMed  Google Scholar 

  4. Chazal J., Tanguy A., Bourges G., Gaurel G., Escande G., Guillot M., Vanneuville G., 1985. Biomechanical properties of spinal ligaments and a histological sudy of the supraspinal ligament in traction. J. Biomech. 18(3), 167–176

    Article  PubMed  CAS  Google Scholar 

  5. Clausen, J. D. Experimental and theoretical investigation of cervical spine biomechanics: effects of injury and stabilization. PhD thesis, University of Iowa, Iowa City

  6. Clausen, J. D., Goel, V. K., Traynelis, V. C., Scifert, J., 1997. Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5–C6 segment. J. Orthop. Res., 15(7), 342–347

    Article  PubMed  CAS  Google Scholar 

  7. Clausen, J. D., V. K. Goel, V. C. Traynelis, and D. G. Wilder. Cervical spine biomechanical investigation using an experimentally validated FE model of C5–C6 motion segment. In: Proceedings of the 42nd Annual Meeting of the Orthopaedic Research Society. Atlanta, GA, 1996

  8. Connell, M. D., Wiesel S. W., 1992. Natural history and pathogenesis of cervical disk disease. Orthop. Clin. North Am. 23, 369–380

    PubMed  CAS  Google Scholar 

  9. Cusick J. F., 1991. Pathophysiology and treatment of cervical spondylotic myelopathy. In: Black, P. (Ed.), Clinical Neurosurgery. Williams & Wilkins, Baltimore, MD, pp. 661–681

    Google Scholar 

  10. Cusick, J. Pathophysiology of cervical spondylotic myelopathy. In: Frontiers in Head and Neck Trauma, edited by N. Yoganandan, F. A. Pintar, S. J. Larson, A. Sances, Jr. The Netherlands: IOS Press, 1998 pp. 690–701

    Google Scholar 

  11. Dauvilliers, F., F. Bendjellel, M. Weiss, F. Lavaste, and C. Tarriere. Development of a finite element model of the neck. In: 38th Stapp Car Crash Conference, 77–91. 1994A13, 1994

  12. Ebara, S., Iatridis J. C., Setton L. A., Foster R. J., Mow V. C., Weidenbaum M., 1996. Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21(4), 452–461

    Article  PubMed  CAS  Google Scholar 

  13. Friedenberg, Z. B., Edeiken J., Spencer N., Tolentino S. C., 1959. Degenerative changes in the cervical spine. J. Bone Joint. Surg. 41A(1), 61–71

    Google Scholar 

  14. Galante, J. O. Tensile properties of the human lumbar annulus fibrosus. Acta Orthop. Scand. (Suppl 100):1–91, 1967

  15. Gilad I., Nissan M. 1986 A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine 11, 154–157

    Article  PubMed  CAS  Google Scholar 

  16. Goel, V. K. 2005. Point of View. Spine, 29(16), 1746

    Article  Google Scholar 

  17. Goel, V. K., Clark C. R., Harris K. G., Kim Y. E., Schulte K. K., 1989. Evaluation of effectiveness of facet wiring technique: An in vitro biomechanical investigation. Annl. Biomed. Eng. 17, 115–126

    Article  CAS  Google Scholar 

  18. Goel, V. K., Clausen J. D., 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23(6), 684–691

    Article  PubMed  CAS  Google Scholar 

  19. Goel, V. K., Monroe B. T., Gilbertson L. G., Brinckmann P., 1995. Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3–4 motion segment subjected to axial compressive loads. Spine, 20, 689–698

    PubMed  CAS  Google Scholar 

  20. Gore, D. R., 2001. Roentgenographic findings in the cervical spine in asymptomatic persons. Spine 26(22), 2463–2466

    Article  PubMed  CAS  Google Scholar 

  21. Gore, D. R., Sepic S. B., Gardner G. M., 1986. Roentgenographic findings of the cervical spine in asymptomatic people. Spine 11(6), 521–524

    Article  PubMed  CAS  Google Scholar 

  22. Guan, Y., Yoganandan, N., Zhang, J., Pintar, F. A., Cusick, J. F., Wolfla, C. E., Maiman. D. J., 2006, Validation of a clinical finite element model of the human lumbosacral spine. Med. Biol. Eng. Comput., 44(8), 633–641

    Article  PubMed  Google Scholar 

  23. Halldin P. H., Borlin K., Kleiven S., Holst H., Jakobsson L., Palmertz C., (2000) Investigation of conditions that affect neck compression-flexion injuries using numerical techniques. Stapp Car Crash J. 44, 127–138

    PubMed  CAS  Google Scholar 

  24. Hilker, C. E., Yoganandan N., Pintar F. A., 2002. Experimental determination of adult and pediatric neck scale factors. Stapp Car Crash J. 46, 417–429

    PubMed  Google Scholar 

  25. Kempson, G. E. Mechanical properties of articular cartilage. In: Adult Articular Cartilage. Kent, England: Pitman, 1979, pp. 333–414

  26. Kleinberger, M. Application of finite element techniques to the study of cervical spine mechanics. In: Proceeding of the 37th Stapp Car crash Conference. San Antonio, Texas, November 7–8, pp. 261–272, 1993

  27. Kumaresan, S., Yoganandan, N., and Pintar, F. A. Age-specific pediatric cervical spine biomechanical responses: three-dimensional nonlinear finite element models. In: Proceedings of the 41st Stapp Car Crash Conference (973319). pp. 3581–3611, 1997

  28. Kumaresan, S., Yoganandan N., Pintar F. A, et al. 1997. Finite element modeling of cervical laminectomy with grade facetectomy. J. Spinal Disord. 10, 40–46

    Article  PubMed  CAS  Google Scholar 

  29. Kumaresan, S., Yoganandan N., Pintar F. A., 1999. Finite element analysis of the cervical spine: a material property sensitivity study. Clin. Biomech. 14, 41–53

    Article  CAS  Google Scholar 

  30. Kumaresan, S., Yoganandan, N., Pintar, F. A., Maiman, D. J., 1999. Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med. Eng. Phys. 21(10), 689–700

    Article  PubMed  CAS  Google Scholar 

  31. Kumaresan, S., Yoganandan, N., Pintar, F. A., Maiman, D. J., Goel, V. K., 2001. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J. Orthop. Res. 19(5), 977–987

    Article  PubMed  CAS  Google Scholar 

  32. Kumaresan, S., Yoganandan N., Pintar F. A., Maiman D. J., Kuppa S., 2000. Biomechanical study of pediatric human cervical spine: finite element approach. J. Biomech. Eng. 122, 1–12

    Article  Google Scholar 

  33. Lindahl D., 1975, Mechanical properties of dried spongy bone. Acta Orthop. Scand., 47, 11–19

    Google Scholar 

  34. Matsumoto M., Fujimura Y., Suzuki N., Nishi Y., Nakamura M., Yabe Y., Shiga H. 1998. MRI of cervical intervertebral discs in asymptomatic subjects. J. Bone Jt. Surg. Br. 80, 19–24

    Article  CAS  Google Scholar 

  35. Maurel, N., Lavaste F., Skalli W., 1997. Three-dimensional parameterized finite element model of the lower cervical spine. J. Biomech. 30(9), 921–931

    Article  PubMed  CAS  Google Scholar 

  36. Mercer, S., Bogduk N., 1999. The ligaments and anulus fibrosus of human adult cervical intervertebral discs. Spine 24(7), 619–628

    Article  PubMed  CAS  Google Scholar 

  37. Ng, H. W., Teo E. C., Lee K. K., Qiu T. X., 2003. Finite element analysis of cervical spinal instability under physiologic loading. J. Spinal Disord. Tech., 16(1), 55–65

    PubMed  Google Scholar 

  38. Ng, H. W., Teo E. C., Zhang Q-H., 2004. Biomechanical effects of C2–C7 intersegmental stability due to laminectomy with unilateral and bilateral facetectomy. Spine 29(16), 1737–1745

    Article  Google Scholar 

  39. Panjabi, M., Duranceau J., Goel V., Oxland T., Takata K. 1991. Cervical human vertebrae. Quanatitative three-dimensional anatomy of the middle and lower regions. Spine 16, 861–869

    Article  PubMed  CAS  Google Scholar 

  40. Panjabi, M., Lydon C., Vasavada A., Grob D., Crisco J., Dvorak J., 1994. On the understanding of clinical instability. Spine 19(23), 2642–2650

    PubMed  CAS  Google Scholar 

  41. Rhule, H. H., M. R. Maltese, B. R. Donnelly, R. H. Eppinger, J. K. Brunner, and J. H. Bolte. Development of a new biofidelity ranking system for anthropomorphic test devices. SAE 2002-22-0024, 2002

  42. Saito, T., Yamamuro T., Shikata J., Oka M., Tsutsumi S., 1991. Analysis and prevention of spinal column deformity following cervical laminectomy. I. Pathogenetic analysis of post-laminectomy deformities. Spine 16, 494–502

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt, H., Heuer F., Drumm J., Klezl Z., Claes L., Wilke H., 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22, 377–384

    Article  Google Scholar 

  44. Shah, J. S., Jayson, M. I. V., Hampson, W. G. J., 1977. Low tension studies of collagen fibres from ligaments of the human spine. Annl. Rheum. Dis. 35, 139–145

    Article  Google Scholar 

  45. Sharma, M., Langrana N. A., Rodriquez, J., 1995, Role of ligaments and facets in lumbar spinal stability. Spine, 20, 887–900

    Article  PubMed  CAS  Google Scholar 

  46. Shirazi-Adl, S. A., Shrivastava S. C., Ahmed A. M., 1984, Stress analysis of the lumbar disc-body unit in compression: a three-dimensional nonlinear finite element study. Spine, 9, 120–134

    Article  PubMed  CAS  Google Scholar 

  47. Stemper B. D., Yoganandan N., Pintar F. A., 2004. Validation of a head-neck computer model for whiplash simulation. Med. Biol. Eng. Comput. 42(3), 333–338

    Article  PubMed  CAS  Google Scholar 

  48. Teo, E. C., Paul, J. P., Evans, J. H., 1994. Finite element stress analysis of a cadaver second cervical vertebra. Med. Biol. Eng. Comput. 32(2), 236–238

    PubMed  CAS  Google Scholar 

  49. Tkaczuk, H. Tensile properties of human lumbar longitudinal ligaments. Acta Orthop. Scand. (Suppl 115):1+, 1968

  50. Ueno K., Liu Y. K. 1987, A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J. Biomech. Eng. 109, 200–209

    Article  PubMed  CAS  Google Scholar 

  51. Voo, L. M., Denman, J. A., Kumaresan, S., Yoganandan, N., Pintar, F. A., Cusick, J. F., 1995. Development of 3D finite element model of the cervical spine. Adv. Bioeng. 31, 13–14

    Google Scholar 

  52. Wheeldon, J. A., Pintar F. A., Knowles S., Yoganandan N., 2006. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J. Biomech. 39, 375–380

    Article  PubMed  Google Scholar 

  53. Winkelstein, B. A., Myers, B. S., 2000. Experimental and computational characterization of three-dimensional cervical spine flexibility. Stapp Car Crash J. 44, 139–158

    PubMed  CAS  Google Scholar 

  54. Wu, H. C., Yao, P. F., 1976. Mechanical behavior of the human annulus fibrosus. J. Biomech. 9, 1–7

    Article  PubMed  CAS  Google Scholar 

  55. Xu, L., V. Agaram, S.Rouhana, R. Hultman, G. Kostyniuk, J. McCleary, H. Mertz, G. Husholtz, and R. Scherer. SAE 2000-01-0165, 2000

  56. Yamada, H. Strength of Biological Materials. Baltimore: Williams & Wilkins, pp. 75–92, 255–259, 1970

  57. Yoganandan, N., Kumaresan S., Pintar F., 2001. Biomechanics of the cervical spine part 2. Cervical spine soft tissue responses and biomechanical model. Clin. Biomech. 16, 1–27

    Article  CAS  Google Scholar 

  58. Yoganandan, N., Kumaresan S., Voo L., Pintar F., 1996. Finite element applications in human cervical spine modeling. Spine 21, 1824–1834

    Article  PubMed  CAS  Google Scholar 

  59. Yoganandan, N., B. Stemper, F. Pintar, J. Baisden, and B. Shender. Normative segment-specific axial and coronal angulation corridors of subaxial cervical column in axial rotation. Spine, in press

  60. Yoganandan, N., Pintar F. A., Stemper B. D., Wolfla C. E., Shender B. S., Pakoff G., 2007. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion. J. Bone Jt. Surg. Am. 89, 1066–1074

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by PHS CDC R49CCR519614 and by the Veterans Affairs Medical Research. We would also like to acknowledge the rest of the staff from the Neuroscience Laboratories at the Veterans Affairs Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Pintar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeldon, J.A., Stemper, B.D., Yoganandan, N. et al. Validation of a Finite Element Model of the Young Normal Lower Cervical Spine. Ann Biomed Eng 36, 1458–1469 (2008). https://doi.org/10.1007/s10439-008-9534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9534-8

Keywords

Navigation