Skip to main content
Log in

Adaptive Match Filter Based Method for Time vs. Amplitude Characterization of Microvolt ECG T-Wave Alternans

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To develop a new method for non-invasive identification of patients prone to ventricular tachyarrhythmia and sudden cardiac death, an adaptive match-filter (AMF) was applied to detect and characterize T-wave alternans (TWA) in 200 coronary artery diseased (CAD) patients compared with 176 healthy (H) subjects. TWA was characterized in terms of duration (TWAD), amplitude (TWAA), and magnitude (TWAM, defined as the product of TWAD times TWAA). A criterion derived from these parameters, estimated over the H-population, allowed discrimination between a risk (TWA+) and a normality (NO TWA) zone in the TWAD-TWAA plane. To gain further ability to discriminate among different risk levels, the TWA+ zone was divided into four sub-zones respectively characterized by low duration and low amplitude (LDLA), low duration and high amplitude (LDHA), high duration and low amplitude (HDLA), and high duration and high amplitude (HDHA). With our methodology, 21 CAD-patients (10.5%) were identified as TWA+, 9 falling in the LDLA zone, 4 in the HDLA, 7 in the LDHA, and 1 in the HDHA. These results are in agreement with clinical expectations and pave the way to further clinical follow-up studies finalized to analyze pathophysiological implications and risk factors associated to each TWA+ zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adam D. R., J. M. Smith, S. Akselrod, S. Nyberg, A. O. Powell, R. J. Cohen 1984 Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J. Electrocardiol. 17, 209–218. doi:10.1016/S0022-0736(84)80057-6

    Article  PubMed  CAS  Google Scholar 

  2. Armoundas A. A., G. F. Tomaselli, H. D. Esperer 2002 Pathophysiological basis and clinical application of T-wave alternans. J. Am. Coll. Cardiol. 40, 207–217. doi:10.1016/S0735-1097(02)01960-5

    Article  PubMed  Google Scholar 

  3. Bigger J. T., D. M. Bloomfield 2007 Microvolt T-wave alternans: an effective approach to risk stratification in ischemic cardiomyopathy? Nat. Clin. Pract. Cardiovasc. Med. 4, 300–301

    PubMed  Google Scholar 

  4. Bloomfield D. M., R. C. Steinman, P. B. Namerow, M. Parides, J. Davidenko, E. S. Kaufman, T. Shinn, A. Curtis, J. Fontaine, D. Holmes, A. Russo, C. Tang, J. T. Bigger 2004 Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to a multicenter automatic defibrillator implantation trial (MADIT) II conundrum. Circulation 110, 1885–1889. doi:10.1161/01.CIR.0000143160.14610.53

    Article  PubMed  Google Scholar 

  5. Burattini L., W. Zareba, R. Burattini 2006 Automatic detection of microvolt T-wave alternans in Holter recordings: effect of baseline wandering. Biomed. Signal Process. Control 1, 162–168. doi:10.1016/j.bspc.2006.05.005

    Article  Google Scholar 

  6. Burattini L., W. Zareba, A. J. Moss 1999 Correlation method for detection of transient T-wave alternans in digital ECG recordings. Ann. Noninvasive Electrocardiol. 4, 416–424. doi:10.1111/j.1542-474X.1999.tb00232.x

    Article  Google Scholar 

  7. Burattini L., W. Zareba, E. J. Rashba, J. P. Couderc, J. Konecki, A. J. Moss 1998 ECG features of microvolt T-wave alternans in coronary artery disease and Long QT Syndrome patients. J. Electrocardiol. 31, 114–120. doi:10.1016/S0022-0736(98)90302-8

    Article  PubMed  Google Scholar 

  8. Cantillon D. J., K. M. Stein, S. M. Markowitz, S. Mittal, B. K. Shah, D. P. Morin, E. S. Zacks, M. Janik, S. Ageno, A. C. Mauer, B. B. Lerman, S. Iwai 2007 Predictive value of microvolt T-wave alternans in patients with left ventricular dysfunction. J. Am. Coll. Cardiol. 50, 166–173. doi:10.1016/j.jacc.2007.02.069

    Article  PubMed  Google Scholar 

  9. Chinushi M., M. Restivo, E. B. Caref, N. El-Sherif 1998 Electrophysiological basis of arrhythmogenicity of QT/T alternans in the long QT syndrome: tri-dimensional analysis of the kinetics of cardiac repolarization. Circ. Res. 83, 614–628

    PubMed  CAS  Google Scholar 

  10. Cox V., M. Patel, J. Kim, T. Liu, G. Sivaraman, S. M. Narayan 2007 Predicting arrhythmia-free survival using spectral and modified-moving average analyses of T-wave alternans. Pacin. Clin. Electrophysiol. 30, 352–358. doi:10.1111/j.1540-8159.2007.00675.x

    Article  Google Scholar 

  11. Ikeda T., H. Saito, K. Tanno, H. Shimizu, J. Watanabe, Y. Ohnishi, Y. Kasamaki, Y. Ozawa 2002 T-wave alternans as predictor for sudden death after myocardial infarction. Am. J. Cardiol. 89, 79–82. doi:10.1016/S0002-9149(01)02171-3

    Article  PubMed  Google Scholar 

  12. Ikeda T., T. Sakata, M. Takami, N. Kondo, N. Tezuka, T. Nakae, M. Noro, Y. Enjoji, R. Abe, K. Sugi, T. Yamaguchi 2000 Combined assessment of T-wave alternans and late potentials used to predict arrhythmic events after myocardial infarction. A prospective study. J. Am. Coll. Cardiol. 35, 722–730. doi:10.1016/S0735-1097(99)00590-2

    Article  PubMed  CAS  Google Scholar 

  13. Ikeda T., H. Yoshino, K. Sugi, K. Tanno, H. Shimizu, J. Watanabe, Y. Kasamaki, A. Yoshida, T. Kato 2006 Predictive value of microvolt T-wave alternans for sudden cardiac death in patients with preserved cardiac function after acute myocardial infarction: results of a collaborative cohort study. J. Am. Coll. Cardiol. 48, 2268–2274

    Article  PubMed  Google Scholar 

  14. Klingenheben T., M. Zabel, R. B. D’Agostino, R. J. Cohen, S. H. Hohnloser 2000 Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 356, 651–652. doi:10.1016/S0140-6736(00)02609-X

    Article  PubMed  CAS  Google Scholar 

  15. Kusmirek S. L., M. R. Gold 2007 Dynamic changes of T-wave alternans: does it predict short-term arrhythmia vulnerability? J. Cardiovasc. Electrophysiol. 18, 518–519. doi:10.1111/j.1540-8167.2007.00800.x

    Article  PubMed  Google Scholar 

  16. Laguna P., G. B. Moody, J. Garcia, A. L. Goldberger, R. G. Mark 1999 Analysis of the ST-T complex of the electrocardiogram using the Karhunen-Loeve transform: adaptive monitoring and alternans detection. Med. Biol. Eng. Comput. 37, 175–189. doi:10.1007/BF02513285

    Article  PubMed  CAS  Google Scholar 

  17. Lilliefors H. W. 1967 On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402. doi:10.2307/2283970

    Article  Google Scholar 

  18. Narayan S. M. 2006 T-wave alternans and the susceptibility to ventricular arrhythmias. J. Am. Coll. Cardiol. 47, 269–281. doi:10.1016/j.jacc.2005.08.066

    Article  PubMed  Google Scholar 

  19. Nearing B. D., A. H. Huang, R. L. Verrier 1991 Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252, 437–440. doi:10.1126/science.2017682

    Article  PubMed  CAS  Google Scholar 

  20. Pastore J. M., S. D. Girouard, K. R. Laurita, F. G. Akar, D. S. Rosenbaum 1999 Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99, 1385–1394

    PubMed  CAS  Google Scholar 

  21. Pastore J. M., D. S. Rosenbaum 2000 Role of structural barriers in the mechanism of alternans-induced reentry. Circ. Res. 87, 1157–1163

    PubMed  CAS  Google Scholar 

  22. Puletti M., M. Curione, G. Righetti, G. Jacobellis 1980 Alternans of the ST segment and T wave in acute myocardial infarction. J. Electrocardiol. 13, 279–300. doi:10.1016/S0022-0736(80)80035-5

    Article  Google Scholar 

  23. Richter S., G. Duray, S. Hohnloser 2005 How to analyze T-wave alternans. Heart Rhythm 2, 1268–1271. doi:10.1016/j.hrthm.2005.07.020

    Article  PubMed  Google Scholar 

  24. Rosenbaum D. S., P. Albrecht, R. J. Cohen 1996 Predicting sudden cardiac death from T wave alternans from the surface electrocardiogram: promises and pitfalls. J. Cardiovasc. Electrophysiol. 7, 1095–1111. doi:10.1111/j.1540-8167.1996.tb00487.x

    Article  PubMed  CAS  Google Scholar 

  25. Rosenbaum D. S., L. E. Jackson, J. M. Smith, H. Garan, J. N. Ruskin, R. J. Cohen 1994 Electrical alternans and vulnerability to ventricular arrhythmias. N. Engl. J. Med. 330, 235–241. doi:10.1056/NEJM199401273300402

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz P. J., A. Malliani 1975 Electrical alternation of T wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the Long QT Syndrome. Am. Heart J. 89, 45–50. doi:10.1016/0002-8703(75)90008-3

    Article  PubMed  CAS  Google Scholar 

  27. Smith J. M., E. A. Clancy, C. R. Valeri, J. N. Ruskin, R. J. Cohen 1988 Electrical alternans and cardiac electrical instability. Circulation 77, 110–121

    PubMed  CAS  Google Scholar 

  28. Tapanainen J. M., A. M. Still, K. E. Airaksinen, H. V. Huikuri 2001 Prognostic significance of risk stratifiers of mortality, including T wave alternans, after acute myocardial infarction: results of prospective follow-up study. J. Cardiovasc. Electrophysiol. 12, 645–652. doi:10.1046/j.1540-8167.2001.00645.x

    Article  PubMed  CAS  Google Scholar 

  29. Zacks E. S., D. P. Morin, S. Ageno, M. Janik, A. C. Maurer, S. M. Markowitz, S. Mittal, S. Iwai, B. K. Shah, B. B. Lerman, K. M. Stain 2007 Effect of oral beta-blocker therapy on microvolt T-wave alternans and electrophysiology testing in patients with ischemic cardiomyopathy. Am. Heart J. 153, 392–397. doi:10.1016/j.ahj.2006.12.010

    Article  PubMed  CAS  Google Scholar 

  30. Zareba W., A. J. Moss, S. Le Cessie, W. J. Hall 1994 T wave Alternans in idiopathic Long QT Syndrome. J. Am. Coll. Cardiol. 23, 1541–1546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Burattini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burattini, L., Zareba, W. & Burattini, R. Adaptive Match Filter Based Method for Time vs. Amplitude Characterization of Microvolt ECG T-Wave Alternans. Ann Biomed Eng 36, 1558–1564 (2008). https://doi.org/10.1007/s10439-008-9528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9528-6

Keywords

Navigation