Skip to main content

Using an Optimization Approach to Design an Insole for Lowering Plantar Fascia Stress—A Finite Element Study


Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.

A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus.

This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. ANSYS Inc. Design Optimization. ANSYS Theory Reference Release 9.0., 2004

  2. Athanasiou K. A, G. T. Liu, L. A. Lavery, D. R. Lanctot, R. C. Schenck Jr Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin. Orthop. 348:269–281, 1998. doi:10.1097/00003086-199803000-00038

    PubMed  Google Scholar 

  3. Chen W. P., C. W. Ju, F. T. Tang. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clin. Biomech. 18(6):S17–24, 2003. doi:10.1016/S0268-0033(03)00080-9

    Article  Google Scholar 

  4. Cheung J. T., M. Zhang, K. N. An. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin. Biomech. 19(8):839–846, 2004. doi:10.1016/j.clinbiomech.2004.06.002

    Article  Google Scholar 

  5. Cheung J. T., M. Zhang, K. N. An. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin. Biomech. 21(2):194–203, 2006. doi:10.1016/j.clinbiomech.2005.09.016

    Article  Google Scholar 

  6. Cheung J. T., M. Zhang, J. T. Cheung, M. Zhang. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch. Phys. Med. Rehabil. 86(2):353–358, 2005. doi:10.1016/j.apmr.2004.03.031

    PubMed  Article  Google Scholar 

  7. Cole C., C. Seto, J. Gazewood. 2005 Plantar fasciitis: evidence-based review of diagnosis and therapy. Am. Fam. Physician 72(11):2237–2242

    PubMed  Google Scholar 

  8. Gefen, A. Stress analysis of the standing foot following surgical plantar fascia release. J. Biomech. 35(5):629–637, 2002. doi:10.1016/S0021-9290(01)00242-1

    PubMed  Article  Google Scholar 

  9. Gefen, A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med. Eng. Phys. 25(6):491–499, 2003. doi:10.1016/S1350-4533(03)00029-8

    PubMed  Article  Google Scholar 

  10. Gefen A., M. Megido-Ravid, Y. Itzchak, M. Arcan. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J. Biomech. Eng. 122(6):630–639, 2000. doi:10.1115/1.1318904

    PubMed  Article  CAS  Google Scholar 

  11. Goske S., A. Erdemir, M. Petre, S. Budhabhatti, P. R. Cavanagh. Reduction of plantar heel pressures: insole design using finite element analysis. J. Biomech. 39(13):2363–2370, 2006. doi:10.1016/j.jbiomech.2005.08.006

    PubMed  Article  Google Scholar 

  12. Huang T. H., C. K. Feng, Y. W. Gung, M. W. Tsai, C. S. Chen, C. L. Liu. Optimization design of thumbspica splint using finite element method. Med. Biol. Eng. Comput. 44(12):1105–1111, 2006. doi:10.1007/s11517-006-0131-4

    PubMed  Article  Google Scholar 

  13. Irving D. B., J. L. Cook, H. B. Menz. Factors associated with chronic plantar heel pain: a systematic review. J. Sci. Med. Sport 9(1–2):11–22, 2006; discussion 23–14

    PubMed  Article  CAS  Google Scholar 

  14. Kitaoka H. B., Z. P. Luo, E. S. Growney, L. J. Berglund, K. N. An Material properties of the plantar aponeurosis. Foot Ankle Int. 15:557–560, 1994

    PubMed  CAS  Google Scholar 

  15. Kitaoka H. B., Z. P. Luo, H. Kura, K. N. An. Effect of foot orthoses on 3-dimensional kinematics of flatfoot: a cadaveric study. Arch. Phys. Med. Rehabil. 83(6):876–879, 2002. doi:10.1053/apmr.2002.32681

    PubMed  Article  Google Scholar 

  16. Kogler G. F., S. E. Solomonidis, J. P. Paul. Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clin. Biomech. 11(5):243–252, 1996. doi:10.1016/0268-0033(96)00019-8

    Article  Google Scholar 

  17. Kogler G. F., F. B. Veer, S. J. Verhulst, S. E. Solomonidis, J. P. Paul. The effect of heel elevation on strain within the plantar aponeurosis: in vitro study. Foot Ankle Int. 22(5):433–439, 2001

    PubMed  CAS  Google Scholar 

  18. Landorf K. B., A. M. Keenan, R. D. Herbert, K. B. Landorf, A. M. Keenan, R. D. Herbert. Effectiveness of foot orthoses to treat plantar fasciitis: a randomized trial. Arch. Intern. Med. 166(12):1305–1310, 2006. doi:10.1001/archinte.166.12.1305

    PubMed  Article  Google Scholar 

  19. Liao Y. C., C. K. Feng, M. W. Tsai, C. S. Chen, C. K. Cheng, Y. C. Ou. Shape modification of the Boston brace using a finite-element method with topology optimization. Spine 32(26):3014–3019, 2007

    PubMed  Article  Google Scholar 

  20. Riddle, D. L., M. Pulisic, P. Pidcoe, and R. E. Johnson. Risk factors for Plantar fasciitis: a matched case-control study.[erratum appears in J Bone Joint Surg Am. 2003 Jul;85-A(7):1338]. J. Bone Joint Surg. Am. 85-A(5):872–877, 2003

    Google Scholar 

  21. Seligman D. A., D. R. Dawson. Customized heel pads and soft orthotics to treat heel pain and plantar fasciitis. Arch. Phys. Med. Rehabil. 84(10):1564–1567, 2003. doi:10.1016/S0003-9993(03)00363-0

    PubMed  Article  Google Scholar 

  22. Simkin, A. Structural analysis of the human foot in standing posture. Ph.D. Thesis, Tel Aviv University, Tel Aviv, 1982

  23. Wu, L. Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures. Clin. Biomech. (Bristol, Avon) 22(2):221–229, 2007. doi:10.1016/j.clinbiomech.2006.09.009

    Article  Google Scholar 

  24. Zhong Z. C., S. H. Wei, J. P. Wang, C. K. Feng, C. S. Chen, C. H. Yu. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med. Eng. Phys. 28(1):90–98, 2006. doi:10.1016/j.medengphy.2005.03.007

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chen-Sheng Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsu, YC., Gung, YW., Shih, SL. et al. Using an Optimization Approach to Design an Insole for Lowering Plantar Fascia Stress—A Finite Element Study. Ann Biomed Eng 36, 1345–1352 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Plantar fascia
  • Finite element method
  • Insole
  • Optimization
  • Biomechanics