Skip to main content
Log in

Suggestion of Potential Stent Design Parameters to Reduce Restenosis Risk driven by Foreshortening or Dogboning due to Non-uniform Balloon-Stent Expansion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The foreshortening or dogboning of a stent that occurs due to transient non-uniform balloon-stent expansion can induce a vascular injury, resulting in restenosis of the coronary artery. However, previous studies rarely considered the effects of transient non-uniform balloon expansion on analysis of the mechanical properties and behaviors of stents during stent deployment, nor did they determine design parameters to minimize the restenosis risk driven by foreshortening or dogboning. The aim of the current study was, therefore, to suggest potential design parameters capable of reducing the possibility of restenosis risk driven by foreshortening or dogboning through a comparative study of seven commercial stents using finite element (FE) analyses of a realistic transient non-uniform balloon-stent expansion process. The results indicate that using stents composed of opened unit cells connected by bend-shaped link structures, in particular the MAC Plus stent, and controlling the geometrical and morphological features of the unit cell strut or the link structure at the distal ends of stent may prevent restenosis risk caused by foreshortening or dogboning. This study provides a first look at the realistic transient non-uniform balloon-stent expansion by investigating the mechanical properties, behaviors, and design parameters capable of reducing the possibility of restenosis risk induced by the foreshortening or the dogboning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

FE:

Finite element

C3D8R:

Eight-node linear brick solid elements

S4R:

Four-node shell elements

F3D4:

Four-node hydrostatic fluid elements

POI:

Point of interest

E :

Elastic modulus (Y s)

Y s :

Yield stress

v :

Poisson ratio

r 1 :

Outer radius of the balloon

r 2 :

Middle radius of the balloon

r 3 :

Inner radius of the balloon

r s :

Initial inner radius of the stents

d 1 :

Length of the first membrane of the balloon

d 2 :

Length of the second membrane of the balloon

d 3 :

Length of the third membrane of the balloon

d f :

Target balloon diameter

L :

Initial length of the stent

\( L^{{\text{load}}}\) :

Longitudinal length of the stent

\(R_{{\text{central}}}^{{\text{load}}}\) :

Central radius of the stent

\(R_{{\text{POI}}}^{{\text{load}}}\) :

Radius at point of interest of the stent

References

  1. Albertini C., M. Montagnani. Dynamic uniaxial and biaxial stress–strain relationships for austenitic stainless steels. Nucl. Eng. Des. 57:107–123, 1980

    Article  CAS  Google Scholar 

  2. Berry, J. L., et al. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. J. Vasc. Interv. Radiol. 13:97–105, 2002

    Article  PubMed  Google Scholar 

  3. Bjarnason, H., et al. Collapse of a Palmaz stent in the subclavian vein Am. J. Roentgenol. 160:1123–1124, 1993

    CAS  Google Scholar 

  4. Carter, A. J., et al. Experimental evaluation of a short transitional edge protection balloon for intracoronary stent deployment. Catheter. Cardiovasc. Interv. 51:112–119, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Chua, S. N. D., et al. Finite-element simulation of stent expansion. J. Mater. Process. Technol. 120:335–340, 2002

    Article  CAS  Google Scholar 

  6. Chua, S. N. D., et al. Finite element simulation of stent and balloon interaction. J. Mater. Process. Technol. 143–144:591–597, 2003

    Article  Google Scholar 

  7. Chua, S. N. D., et al. Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method. J. Mater. Process. Technol. 155–156:1764–1771, 2004

    Google Scholar 

  8. Chua, S. N. D., et al. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J. Mater. Process. Technol. 155–156:1772–1779, 2004

    Google Scholar 

  9. Dangas G., V. Fuster. Management of restenosis after coronary intervention. Am. Heart J. 132:428–436, 1996

    Article  PubMed  CAS  Google Scholar 

  10. Dotter, C. T. Transluminally placed coil spring end arterial tube graft, long-term patency in canine popliteal artery. Invest. Radiol. 4:329–332, 1969

    Article  PubMed  CAS  Google Scholar 

  11. Dumoulin C., B. Cochelin. 2000 Mechanical behavior modeling of balloon-expandable stents. J. Biomech. 33:1461–1470

    Article  PubMed  CAS  Google Scholar 

  12. Erbel, R., et al. Coronary-artery stenting compared with balloon angioplasty for restenosis after initial balloon angioplasty. N. Engl. J. Med. 339:1672–1678, 1998

    Article  PubMed  CAS  Google Scholar 

  13. Etave, F., et al. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001

    Article  PubMed  CAS  Google Scholar 

  14. Fischman, D. L., et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 331:496–501, 1994

    Article  PubMed  CAS  Google Scholar 

  15. Freitag, L., et al. Theoretical and experimental basis for development of dynamic airway stent. Eur. Respir. J. 7:2038–2045, 1994

    PubMed  CAS  Google Scholar 

  16. Holzapfel, G., et al. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing Ann. Biomed. Eng. 30:753–767, 2002

    Article  PubMed  Google Scholar 

  17. Kandzari, D. E., et al. Coronary artery stents: evaluating new designs for contemporary percutaneous intervention. Catheter. Cardiovasc. Interv. 56:562–576, 2002

    Article  PubMed  Google Scholar 

  18. Kastrati, A., et al. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001

    Article  PubMed  CAS  Google Scholar 

  19. Lohavanichbutr, K., et al. Mechanisms, management, and outcome of failure of delivery of coronary stents. Am. J. Cardiol. 83:779–781, 1999

    Article  PubMed  CAS  Google Scholar 

  20. MatWeb. Dupont Fusabond E MB100D High Density Polyethylene, Available at http://www.matweb.com/search/SpecificMaterial.asp?bassnum=PDUPM015 . MatWeb Material Property Data, 2006

  21. Migliavacca, F., et al. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002

    Article  PubMed  Google Scholar 

  22. Migliavacca, F., et al. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217, 2004

    Article  PubMed  Google Scholar 

  23. Migliavacca, F., et al. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27:13–18, 2004

    Article  Google Scholar 

  24. Migliavacca, F., et al. A predictive study of the mechanical behavior of coronary stents by computer modeling. Med. Eng. Phys. 27:13–18, 2005

    Article  PubMed  Google Scholar 

  25. Prendergast, P. J., et al. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 125:692–699, 2003

    Article  PubMed  CAS  Google Scholar 

  26. Rogers, C., et al. Balloon artery interactions during stent placement. A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999

    PubMed  CAS  Google Scholar 

  27. Rosenfield, K., et al. Restenosis of endovascular stents from stent compression. J. Am. Coll. Cardiol. 29:328–338, 1997

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz, R. S. Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am. J. Cardiol. 81:14E–17E, 1998

    Article  PubMed  CAS  Google Scholar 

  29. Serruys, P. W., et al. A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med. 331:489–495, 1994

    Article  PubMed  CAS  Google Scholar 

  30. Stefanidis, I. K., et al. Development in intracoronary stents. Hellenic J. Cardiol. 43:63–67, 2002

    Google Scholar 

  31. Suwaidi, A. I., et al. Coronary artery stents. J. Am. Med. Assoc. 284:1828–1836, 2000

    Article  Google Scholar 

  32. Timmins, L. H., et al. Stented artery biomechanics and device design optimization. Med. Biol. Eng. Comput. 45:505–513, 2007

    Article  PubMed  Google Scholar 

  33. Wang, W. Q., et al. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39:21–32, 2006

    Article  PubMed  Google Scholar 

  34. Wong, P., et al. Migration of the AVE micro coronary stent. Catheter. Cardiovasc. Diagn. 38:267–27, 1996

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Generic Technology Development Program of the Korean Ministry of Commerce, Industry, and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, D., Cho, SK., Park, WP. et al. Suggestion of Potential Stent Design Parameters to Reduce Restenosis Risk driven by Foreshortening or Dogboning due to Non-uniform Balloon-Stent Expansion. Ann Biomed Eng 36, 1118–1129 (2008). https://doi.org/10.1007/s10439-008-9504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9504-1

Keywords

Navigation