Skip to main content

Advertisement

Log in

The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The local dilation of the infrarenal abdominal aorta, termed an abdominal aortic aneurysm (AAA), is often times asymptomatic and may eventually result in rupture—an event associated with a significant mortality rate. The estimation of in-vivo stresses within AAAs has been proposed as a useful tool to predict the likelihood of rupture. For the current work, a previously-derived anisotropic relation for the AAA wall was implemented into patient-specific finite element simulations of AAA. There were 35 AAAs simulated in the current work which were broken up into three groups: elective repairs (n = 21), non-ruptured repairs (n = 5), and ruptured repairs (n = 9). Peak stresses and strains were compared using the anisotropic and isotropic constitutive relations. There were significant increases in peak stress when using the anisotropic relationship (p < 0.001), even in the absence of the ILT (p = 0.014). Rutpured AAAs resulted in elevated peak stresses as compared to non-ruptured AAAs when using both the isotropic and anisotropic simulations, however these comparisons did not reach significance (p ani = 0.55, p iso = 0.73). While neither the isotropic or anisotropic simulations were able to significantly discriminate ruptured vs. non-ruptured AAAs, the lower p-value when using the anisotropic model suggests including it into patient-specific AAAs may help better identify AAAs at high risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chuong, C. J., Fung, Y. C. 1986 On residual stresses in arteries [erratum appears in J. Biomech. Eng. 1990 Aug;112(3):249]. J. Biomech. Eng., 108(2), 189–192

    Article  PubMed  CAS  Google Scholar 

  2. Crawford, C. M., Hurtgen-Grace K. et al. 2003 Abdominal aortic aneurysm: an illustrated narrative review. J. Manipulative Physiol. Ther., 26(3), 184–195

    Article  PubMed  Google Scholar 

  3. Delfino, A., Stergiopulos N. et al. 1997 Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech., 30(8), 777–786

    Article  PubMed  CAS  Google Scholar 

  4. Di Martino, E. S., Guadagni G. et al. 2001 Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys., 23(9), 647–655

    Article  PubMed  Google Scholar 

  5. Di Martino, E., Vorp, D. 2003 Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng., 31(7), 804–809

    Article  PubMed  Google Scholar 

  6. Elger, D. F., Blackketter D. M. et al. 1996 The influence of shape on the stresses in model abdominal aortic aneurysms. J. Biomech. Eng., 118(3), 326–332

    Article  PubMed  CAS  Google Scholar 

  7. Fillinger, M. F., Marra S. P. et al. 2003 Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg., 37(4), 724–732

    Article  PubMed  Google Scholar 

  8. Fillinger, M. F., Raghavan M. L. et al. 2002 In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg., 36(3), 589–597

    Article  PubMed  Google Scholar 

  9. Fillinger, M. F., Raghavan M. L. et al. 2002 In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg., 36(3), 589–597

    Article  PubMed  Google Scholar 

  10. Fung, Y. C. Biomechanics—Mechanical Properties of Living Tissue, 2 edn. Springer, 1993

  11. Hadlock, T. A., Sundback C. A. et al. 2001 A new artificial nerve graft containing rolled Schwann cell monolayers. Microsurgery, 21(3), 96–101

    Article  PubMed  CAS  Google Scholar 

  12. Hua, J., Mower, W. R., 2001 Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stress. J. Vasc. Surg., 34, 308–315

    Article  PubMed  CAS  Google Scholar 

  13. Inzoli, F., Boschetti F. et al. 1993 Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg., 7, 667–674

    Article  PubMed  CAS  Google Scholar 

  14. Kyriacou, S. K., Humphrey, J. D. 1996 Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. J. Biomech., 29(8), 1015–1022

    Article  PubMed  CAS  Google Scholar 

  15. Marra, S. P., M. L. Raghavan, et al. Estimation of the zero-pressure geometry of abdominal aortic aneurysms form dynamic magnetic resonance imaging. In: 2005 Summer Bioengineering Conference. Vail, CO: ASME, 2005

  16. Mower, W. R., Baraff L. J. et al. 1993 Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res., 55(2), 155–161

    Article  PubMed  CAS  Google Scholar 

  17. Mower, W. R., W. J. Quinones, et al. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Sur. 26(4):602–608, 1997, Official Publication, the Society For Vascular Surgery [and] International Society For Cardiovascular Surgery, North American Chapter

    Google Scholar 

  18. Nicosia, M. A., Kasalko J. S. et al. 2002 Biaxial mechanical properties of porcine ascending aortic wall tissue. J. Heart Valve Dis., 11(5), 680–686; discussion 686-687

    PubMed  Google Scholar 

  19. Patel, D. J., Fry, D. L. 1966 Longitudinal tethering of arteries in dogs. Circ. Res., 19(6), 1011–1021

    PubMed  CAS  Google Scholar 

  20. Patel, D. J., Fry, D. L. 1969 The elastic symmetry of arterial segments in dogs. Circ. Res. 24(1), 1–8

    PubMed  CAS  Google Scholar 

  21. Raghavan, M. L., J. Kratzberg, et al. Heterogeneous, variable wall-thickness modeling of a ruptured abdominal aortic aneurysm. In: 2004 ASME International Mechanical Engineering Conference. Anaheim, CA, 2004

  22. Raghavan, M. L., Ma B. et al. 2006 Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng., 34(9), 1414–1419

    Article  PubMed  CAS  Google Scholar 

  23. Raghavan, M. L., Vorp D. A. 2000 Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech., 33, 475–482

    Article  PubMed  CAS  Google Scholar 

  24. Raghavan M. L., D. A. Vorp et al. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31(4), 760–9, 2000

    Article  PubMed  CAS  Google Scholar 

  25. Sacks, M. S., Chuong C. J. et al. 1993 In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann. Biomed. Eng., 21(3), 263–275

    Article  PubMed  CAS  Google Scholar 

  26. Smith, D. B., M. S. Sacks, et al. A biquintic hermite finite element for surface geometric analysis of abdominal aortic aneurysms. In: Proc. 3rd World Congress for Biomechanics. 1998

  27. Smith, D. B., Sacks M. S. et al. 2000 Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng., 28(6), 598–611

    Article  PubMed  CAS  Google Scholar 

  28. Sonesson, B., Sandgren T. et al. 1999 Abdominal aortic aneurysm wall mechanics and their relation to risk of rupture. Eur. J. Vasc. Endovasc. Surg., 18(6), 487–493

    Article  PubMed  CAS  Google Scholar 

  29. Speelman, L., Bohra A. et al. 2007 Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J. Biomech. Eng., 129(1), 105–109

    Article  PubMed  Google Scholar 

  30. Stringfellow, M. M., Lawrence P. F. et al. 1987 The influence of aorta-aneurysm geometry upon stress in the aneurysm wall. J. Surg. Res., 42, 425–433

    Article  PubMed  CAS  Google Scholar 

  31. Takagi, H., Yoshikawa S. et al. 2005 Intrathrombotic pressure of a thrombosed abdominal aortic aneurysm. Ann. Vasc. Surg., 19(1), 108–112

    Article  PubMed  Google Scholar 

  32. Tanaka, T. T., Fung, Y. C. 1974 Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7(4), 357–370

    Article  PubMed  CAS  Google Scholar 

  33. Thubrikar, M. J., Al-Soudi J. et al. 2001 Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann. Vasc. Surg., 15(3), 355–366

    Article  PubMed  CAS  Google Scholar 

  34. Thubrikar, M. J., Robicsek F. et al. 2003 Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J. Cardiovasc. Surg. (Torino), 44(1), 67–77

    CAS  Google Scholar 

  35. Vaishnav R. N., J. Vossoughi. Residual stress and strain in aortic segments. J. Biomech., 20, 235–239, 1987

    Article  PubMed  CAS  Google Scholar 

  36. Vande Geest, J. P., Sacks M. S. et al. 2004 Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng., 126(6), 815–822

    Article  PubMed  Google Scholar 

  37. Vande Geest, J. P., M. S. Sacks, et al. A planar biaxial constitutive relation for the intraluminal thrombus in abdominal aortic aneurysms. In: Annual Fall Meeting of the Biomedical Engineering Society. Philadelphia, PA, 2004

  38. Vande Geest, J. P., Sacks M. S. et al. 2006 The effect of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech., 39(7), 1324–1334

    Article  PubMed  Google Scholar 

  39. Vande Geest, J. P., Wang D. H. et al. 2006 Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng., 34(7), 1098–1106

    Article  PubMed  Google Scholar 

  40. Venkatasubramaniam, A. K., Fagan M. J. et al. 2004 A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg., 28(2), 168–176

    PubMed  CAS  Google Scholar 

  41. Vorp, D. A., Mandarino W. A. et al. 1996 Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovasc. Surg., 4(6), 732–739

    Article  PubMed  CAS  Google Scholar 

  42. Vorp, D. A., Raghavan M. L. et al. 1998 Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J. Vasc. Surg., 27(4), 27

    Article  Google Scholar 

  43. Vorp, D. A., Vande Geest, J. P. 2005 Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol., 25(8), 1558–1566

    Article  PubMed  CAS  Google Scholar 

  44. Wang, D. H. Noninvasive biomechanical assessment of the rutpure potential of abdominal aortic aneurysms. In: Bioengineering. Pittsburgh, PA: University of Pittsburgh, 2002, p. 244

  45. Wang, D. H. J., Makaroun M. S. et al. 2001 Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng., 123, 536–539

    Article  PubMed  CAS  Google Scholar 

  46. Wang, D. H. J., Makaroun M. S. et al. 2002 Effect of intraluminal thrombus on wall stress in patient specific models of abdominal aortic aneurysm. J. Vasc. Surg., I36(3), 598–604

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (R01-HL-60670) to DAV as well as The Pittsburgh Foundation (#M2000-0027) to DAV. The authors would like to acknowledge the assistance from the Engineered Tissue Mechanics Laboratory, Wei Sun PhD, Elena Di Martino PhD, Ajay Bohra MS, as well as Michel Makaroun, MD and the rest of the Division of Vascular Surgery at the University of Pittsburgh Medical Center. MSS is an Established Investigator of the AHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Vorp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vande Geest, J.P., Schmidt, D.E., Sacks, M.S. et al. The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms. Ann Biomed Eng 36, 921–932 (2008). https://doi.org/10.1007/s10439-008-9490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9490-3

Keywords

Navigation