Skip to main content

Advertisement

Log in

Physiogenomic Analysis of Localized fMRI Brain Activity in Schizophrenia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3

References

  1. Assaf M., Rivkin P. R., Kuzu C. H., Calhoun V. D., Kraut M. A., Groth K. M., et al (2006). Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia. Biol. Psychiatry 59: 452–459

    PubMed  Google Scholar 

  2. Bath K. G., Lee F. S. (2006). Variant BDNF (Val66Met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 6: 79–85

    Article  PubMed  Google Scholar 

  3. Beasley C. L., Pennington K., Behan A., Wait R., Dunn M. J., Cotter D. (2006). Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6: 3414–3425

    PubMed  CAS  Google Scholar 

  4. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B 57: 289–300

    Google Scholar 

  5. Benjamini Y., Hochberg Y.(2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Edu. Behav. Stat. 25: 60–83

    Google Scholar 

  6. Blair J., Spreen O. (1989). New Adult Reading Test—Revised Manual. VIC., Canada: University of Victoria

    Google Scholar 

  7. Blair J., Spreen O. (1989). Predicting premorbid IQ: a revision of the National Adult Reading Test. Clin. Neuropsychol. 3: 129–136

    Google Scholar 

  8. Brahmbhatt S. B., Haut K., Csernansky J. G., Barch D. M. (2006): Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings. Schizophr. Res. 87: 191–204

    PubMed  Google Scholar 

  9. Braver T. S., Barch D. M., Gray J. R., Molfese D. L., Snyder A. (2001): Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11: 825–836

    PubMed  CAS  Google Scholar 

  10. Calhoun V. D., Adali T., Kiehl K. A., Astur R., Pekar J. J., Pearlson G. D. (2006): A method for multitask fMRI data fusion applied to schizophrenia. Hum. Brain Mapp. 27: 598–610

    PubMed  Google Scholar 

  11. Calhoun V. D., Kiehl K. A., Liddle P. F., Pearlson G. D. (2004): Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia. Biol. Psychiatry 55: 842–849

    PubMed  Google Scholar 

  12. Calhoun, V. D., P. K. Maciejewski, G. D. Pearlson, and K. A. Kiehl. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum. Brain Mapp., 2007 [Epub ahead of print].

  13. Callicott J. H. (2003). An expanded role for functional neuroimaging in schizophrenia. Curr. Opin. Neurobiol. 13: 256–260

    PubMed  CAS  Google Scholar 

  14. Cardon L. R., Bell J. I. (2001). Association study designs for complex diseases. Nat. Rev. Genet. 2: 91–99

    PubMed  CAS  Google Scholar 

  15. Casey B. J., Forman S. D., Franzen P., Berkowitz A., Braver T. S., Nystrom L. E. et al (2001): Sensitivity of prefrontal cortex to changes in target probability: a functional MRI study. Hum. Brain Mapp. 13: 26–33

    PubMed  CAS  Google Scholar 

  16. Clark, D., I. Dedova, S. Cordwell, and I. Matsumoto. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol. Psychiatry 11:459–470, 423, 2006

    Google Scholar 

  17. Cleveland W. S. (1979): Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74: 829–836

    Google Scholar 

  18. Cleveland W. S., Devlin S. J. (1988): Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83: 596–610

    Google Scholar 

  19. Colhoun H. M., McKeigue P. M., Davey S. G. (2003): Problems of reporting genetic associations with complex outcomes. Lancet 361: 865–872

    PubMed  Google Scholar 

  20. Cubells J. F., Zabetian C. P. (2004): Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. Psychopharmacology (Berl) 174: 463–476

    CAS  Google Scholar 

  21. Dalgaard P. (2002): Introductory Statistics with R. New York: Springer

    Google Scholar 

  22. Detera-Wadleigh S. D., McMahon F. J. (2006): G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol. Psychiatry 60: 106–114

    PubMed  CAS  Google Scholar 

  23. Dupuis J., O’Donnell C. J. (2007): Interpreting results of large-scale genetic association studies: separating gold from fool’s gold. JAMA 297: 529–531

    PubMed  CAS  Google Scholar 

  24. Faerber L., Drechsler S., Ladenburger S., Gschaidmeier H., Fischer W. (2007): The neuronal 5-HT3 receptor network after 20 years of research-evolving concepts in management of pain and inflammation. Eur. J. Pharmacol. 560: 1–8

    PubMed  CAS  Google Scholar 

  25. Fan J. B., Oliphant A., Shen R., Kermani B. G., Garcia F., Gunderson K. L. et al (2003): Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68: 69–78

    PubMed  CAS  Google Scholar 

  26. Fanous A. H., Neale M. C., Straub R. E., Webb B. T., O’Neill A. F., Walsh D. et al (2004): Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: a family based association study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 125: 69–78

    PubMed  Google Scholar 

  27. Faraway J. J. (2004): Linear Models with R. Boca Raton, FL: Chapman & Hall/CRC

    Google Scholar 

  28. First M. B., Spitzer R. L., Gibbon illiams B. (1995) Structured Clinical Interview for DSM-IV Axis I Disorders: Patient Edition (SCID-I/P, Version 2.0). New York: Biometrics Research Department, New York State Psychiatric Institute

    Google Scholar 

  29. Freire L., Mangin J. F. (2001): Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14: 709–722

    PubMed  CAS  Google Scholar 

  30. Friston J. A. (1995). Spatial registration and normalization of images. Human Brain Mapp. 3: 165–189

    Google Scholar 

  31. Gallinat J., Heinz A. (2006). Combination of multimodal imaging and molecular genetic information to investigate complex psychiatric disorders. Pharmacopsychiatry 31(Suppl 1): S76–S79

    Google Scholar 

  32. Gambaro G., Anglani F., D’Angelo A. (2000): Association studies of genetic polymorphisms and complex disease. Lancet 355: 308–311

    PubMed  CAS  Google Scholar 

  33. Garrity A. G., Pearlson G. D., McKiernan K., Lloyd D., Kiehl K. A., Calhoun V. D. (2007): Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry 164: 450–457

    PubMed  Google Scholar 

  34. Glahn D. C., Bearden C. E., Niendam T. A., Escamilla M. A. (2004): The feasibility of neuropsychological endophenotypes in the search for genes associated with bipolar affective disorder. Bipolar. Disord. 6: 171–182

    PubMed  Google Scholar 

  35. Glahn D. C., Therman S., Manninen M., Huttunen M., Kaprio J., Lonnqvist J. et al (2003): Spatial working memory as an endophenotype for schizophrenia. Biol. Psychiatry 53: 624–626

    PubMed  Google Scholar 

  36. Goldberg T. E., Straub R. E., Callicott J. H., Hariri A., Mattay V. S., Bigelow L. et al (2006): The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31: 2022–2032

    PubMed  CAS  Google Scholar 

  37. Goldman, A. L., L. Pezawas, V. S. Mattay, B. Fischl, B. A. Verchinski, B. Zoltick et al (2007): Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol. Psychiatry, 11: 459–470

    Google Scholar 

  38. Guidotti A., Auta J., Davis J. M., Dong E., Grayson D. R., Veldic M., et al (2005): GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 180: 191–205

    CAS  Google Scholar 

  39. Hariri A. R., Weinberger D. R. (2003): Imaging genomics. Br. Med. Bull. 65: 259–270

    PubMed  CAS  Google Scholar 

  40. Harrison P. J., Weinberger D. R. (2005): Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10: 40–68

    PubMed  CAS  Google Scholar 

  41. Ho B. C., Milev P., O’Leary D. S., Librant A., Andreasen N. C., Wassink T. H. (2006): Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Arch. Gen. Psychiatry 63: 731–740

    PubMed  CAS  Google Scholar 

  42. Ho, B. C., T. H. Wassink, D. S. O’Leary, V. C. Sheffield, and N. C. Andreasen. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol. Psychiatry 10:229, 287–229, 298, 2005

    Google Scholar 

  43. Holford T. R., Windemuth A., Ruano G. (2006): Designing physiogenomic studies. Pharmacogenomics 7: 157–158

    PubMed  Google Scholar 

  44. Johnson M. R., Morris N. A., Astur R. S., Calhoun V. D., Mathalon D. H., Kiehl K. A., et al (2006): A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biol. Psychiatry 60: 11–21

    PubMed  Google Scholar 

  45. Kalayasiri R., Sughondhabirom A., Gueorguieva R., Coric V., Lynch W. J., Lappalainen J. et al (2007): Dopamine beta-hydroxylase gene (DbetaH)-1021C->T influences self-reported paranoia during cocaine self-administration. Biol. Psychiatry 61: 1310–1313

    PubMed  CAS  Google Scholar 

  46. Keshavan M. S., Prasad K. M., Pearlson G. (2007): Are brain structural abnormalities useful as endophenotypes in schizophrenia? Int. Rev. Psychiatry 19: 397–406

    PubMed  Google Scholar 

  47. Keshavan, M. S., K. M. Prasad, and G. Pearlson. (2007): Are brain structural abnormalities useful as endophenotypes in schizophrenia? Intl. Psychiatr. Rev. 19: 397–406

    Google Scholar 

  48. Kiehl K. A., Liddle P. F. (2001): An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophr. Res. 48: 159–171

    PubMed  CAS  Google Scholar 

  49. Kiehl K. A., Liddle P. F. (2003): Reproducibility of the hemodynamic response to auditory oddball stimuli: a six-week test–retest study. Hum. Brain Mapp. 18: 42–52

    PubMed  Google Scholar 

  50. Kiehl K. A., Stevens M. C., Celone K., Kurtz M., Krystal J. H. (2005): Abnormal hemodynamics in schizophrenia during an auditory oddball task. Biol. Psychiatry 57: 1029–1040

    PubMed  Google Scholar 

  51. Kiehl K. A., Stevens M. C., Laurens K. R., Pearlson G., Calhoun V. D., Liddle P. F. (2005): An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. Neuroimage 25: 899–915

    PubMed  Google Scholar 

  52. Kim C. H., Zabetian C. P., Cubells J. F., Cho S., Biaggioni I., Cohen B. M., et al (2002): Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. Am. J. Med. Genet. 108: 140–147

    PubMed  Google Scholar 

  53. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J. et al (2001): Initial sequencing and analysis of the human genome. Nature 409: 860–921

    PubMed  CAS  Google Scholar 

  54. Lee C., McGlashan T. H., Woods S. W. (2005): Prevention of schizophrenia: can it be achieved? CNS. Drugs 19: 193–206

    PubMed  Google Scholar 

  55. Lewis D. A. (2000): GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev. 31: 270–276

    PubMed  CAS  Google Scholar 

  56. Liddle P. F. (1996): Functional imaging-schizophrenia. Br. Med. Bull. 52: 486–494

    PubMed  CAS  Google Scholar 

  57. Lieberman J. A., Sheitman B. B., Kinon B. J. (1997): Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17: 205–229

    PubMed  CAS  Google Scholar 

  58. Linden D. E., Prvulovic D., Formisano E., Vollinger M., Zanella F. E., Goebel R. et al (1999): The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb. Cortex 9: 815–823

    PubMed  CAS  Google Scholar 

  59. Lo W. S., Lau C. F., Xuan Z., Chan C. F., Feng G. Y., He L. et al (2004): Association of SNPs and haplotypes in GABAA receptor beta2 gene with schizophrenia. Mol. Psychiatry 9: 603–608

    PubMed  CAS  Google Scholar 

  60. Losoncz M. F., Davidson M., Davis K. L. (1987): The dopamine hypothesis of schizophrenia. In: Eltzer H. Y., (Ed), Psychopharmacology: The Third Generation of Progress. New York: Raven Press, pp 715–726

    Google Scholar 

  61. Maindonald J., Braun J. (2003): Data Analysis and Graphics Using R. Cambridge: Cambridge University Press

    Google Scholar 

  62. Maldjian J. A., Laurienti P. J., Kraft R. A., Burdette J. H. (2003): An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19: 1233–1239

    PubMed  Google Scholar 

  63. Malek R. L., Wang H. Y., Kwitek A. E., Greene A. S., Bhagabati N., Borchardt G. et al (2006): Physiogenomic resources for rat models of heart, lung and blood disorders. Nat. Genet. 38: 234–239

    PubMed  CAS  Google Scholar 

  64. Marchini J., Cardon L. R., Phillips M. S., Donnelly P. (2004): The effects of human population structure on large genetic association studies. Nat. Genet. 36: 512–517

    PubMed  CAS  Google Scholar 

  65. McCarley R. W., Shenton M. E., O’Donnell B. F., Faux S. F., Kikinis R., Nestor P. G. et al (1993): Auditory P300 abnormalities and left posterior superior temporal gyrus volume reduction in schizophrenia. Arch. Gen. Psychiatry 50: 190–197

    PubMed  CAS  Google Scholar 

  66. McCarthy G., Luby M., Gore J., Goldman-Rakic P. (1997): Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J. Neurophysiol. 77: 1630–1634

    PubMed  CAS  Google Scholar 

  67. Menon V., Ford J. M., Lim K. O., Glover G. H., Pfefferbaum A. (1997): Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8: 3029–3037

    PubMed  CAS  Google Scholar 

  68. Meyer-Lindenberg A., Poline J. B., Kohn P. D., Holt J. L., Egan M. F., Weinberger D. R. et al (2001): Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am. J. Psychiatry 158: 1809–1817

    PubMed  CAS  Google Scholar 

  69. Meyer-Lindenberg A., Weinberger D. R. (2006): Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci. 7: 818–827

    PubMed  CAS  Google Scholar 

  70. Nakajima M., Hattori E., Yamada K., Iwayama Y., Toyota T., Iwata Y. et al (2007): Association and synergistic interaction between promoter variants of the DRD4 gene in Japanese schizophrenics. J. Hum. Genet. 52: 86–91

    PubMed  CAS  Google Scholar 

  71. Numata S., Ueno S., Iga J., Yamauchi K., Hongwei S., Kinouchi S., et al (2007): Interaction between catechol-O-methyltransferase (COMT) Val108/158Met and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in age at onset and clinical symptoms in schizophrenia. J. Neural. Transm. 114: 255–259

    PubMed  CAS  Google Scholar 

  72. Numata S., Ueno S., Iga J., Yamauchi K., Hongwei S., Ohta K., et al (2006): Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in schizophrenia is associated with age at onset and symptoms. Neurosci. Lett. 401: 1–5

    PubMed  CAS  Google Scholar 

  73. Nyholt D. R. (2001): Genetic case–control association studies-correcting for multiple testing. Hum. Genet. 109: 564–567

    PubMed  CAS  Google Scholar 

  74. Oak J. N., Oldenhof J., Van Tol H. H. (2000): The dopamine D(4) receptor: one decade of research. Eur. J. Pharmacol. 405: 303–327

    PubMed  CAS  Google Scholar 

  75. Ohnishi T., Hashimoto R., Mori T., Nemoto K., Moriguchi Y., Iida H., et al (2006): The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 129: 399–410

    PubMed  Google Scholar 

  76. Oliphant, A., D. L. Barker, J. R. Stuelpnagel, and M. S. Chee. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl: 56–57, 2002

  77. Oliver Josephs R. T. K. F. (1997): Event-related fMRI. Human Brain Mapp. 5: 243–248

    Google Scholar 

  78. Opitz B., Mecklinger A., Von Cramon D. Y., Kruggel F. (1999): Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology 36: 142–147

    PubMed  CAS  Google Scholar 

  79. Owen M. J., Craddock N., O’Donovan M. C. (2005): Schizophrenia: genes at last? Trends Genet. 21: 518–525

    PubMed  CAS  Google Scholar 

  80. Pearlson G. D., Calhoun V. (2007): Structural and functional magnetic resonance imaging in psychiatric disorders. Can. J. Psychiatry 52: 158–166

    PubMed  Google Scholar 

  81. R Core Development Team (2004): A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing

    Google Scholar 

  82. Redden D. T., Allison D. B. (2003): Nonreplication in genetic association studies of obesity and diabetes research. J. Nutr. 133: 3323–3326

    PubMed  CAS  Google Scholar 

  83. Reinere A., Yekutiele D., Benjamini Y. (2003): Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375

    Google Scholar 

  84. Rosen B. R., Buckner R. L., Dale A. M. (1998): Event-related functional MRI: past, present, and future. Proc. Natl. Acad. Sci. USA 95: 773–780

    PubMed  CAS  Google Scholar 

  85. Ruano, G. Physiogenomic method for predicting clinical outcomes of treatments in patients. Patent, USPTO # 20060278241. 12-14-2006

  86. Ruano, G., J. W. Goethe, C. Caley, S. Woolley, T. R. Holford, M. Kocherla, et al. (2007) Physiogenomic comparison of weight profiles of olanzapine- and risperidone-treated patients. Mol. Psychiatry, 12(5): 474–482

    PubMed  CAS  Google Scholar 

  87. Ruano G., Seip R. L., Windemuth A., Zollner S., Tsongalis G. J., Ordovas J. et al (2006): Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis 185: 65–69

    PubMed  CAS  Google Scholar 

  88. Ruano G., Thompson P. D., Windemuth A., Smith A., Kocherla M., Holford T. R., et al. (2005): Physiogenomic analysis links serum creatine kinase activities during statin therapy to vascular smooth muscle homeostasis. Pharmacogenomics 6: 865–872

    PubMed  CAS  Google Scholar 

  89. Ruano, G., A. Windemuth, and T. Holford. Physiogenomics: integrating systems engineering and nanotechnology for personalized medicine. In: The Biomedical Engineering Handbook, 3rd edn, edited by J. D. Bronzino. CRC Press, 2005, pp. 28-1–28-9

  90. Ruano G., Windemuth A., Kocherla M., Holford T., Fernandez M. L., Forsythe C. E. et al (2006): Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction. Nutr. Metab (Lond) 3: 20

    Google Scholar 

  91. Salanti G., Sanderson S., Higgins J. P. (2005): Obstacles and opportunities in meta-analysis of genetic association studies. Genet. Med. 7: 13–20

    Article  PubMed  Google Scholar 

  92. Saltelli A., Chan K., Scott E. M. (2000): Sensitivity Analysis. Chichester: John Wiley and Sons

    Google Scholar 

  93. Saperstein A. M., Fuller R. L., Avila M. T., Adami H., McMahon R. P., Thaker G. K., et al (2006): Spatial working memory as a cognitive endophenotype of schizophrenia: assessing risk for pathophysiological dysfunction. Schizophr. Bull. 32: 498–506

    PubMed  Google Scholar 

  94. Sarter M., Berntson G. G., Cacioppo J. T. (1996) Brain imaging and cognitive neuroscience. Toward strong inference in attributing function to structure. Am. Psychol. 51: 13–21

    PubMed  CAS  Google Scholar 

  95. Schroder J., Buchsbaum M. S., Siegel B. V., Geider F. J., Lohr J., Tang C. et al (1996): Cerebral metabolic activity correlates of subsyndromes in chronic schizophrenia. Schizophr. Res. 19: 41–53

    PubMed  CAS  Google Scholar 

  96. Sherry S. T., Ward M., Sirotkin K. (1999): dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 9: 677–679

    PubMed  CAS  Google Scholar 

  97. Soares J. C. (2003) Contributions from brain imaging to the elucidation of pathophysiology of bipolar disorder. Int. J. Neuropsychopharmacol. 6: 171–180

    PubMed  CAS  Google Scholar 

  98. Spitzer R. L., Williams J. B., Gibbon M. (1996): Structured Clinical Interview for DSM-IV: Non-patient Edition (SCID-NP). New York: Biometrics Research Department, New York State Psychiatric Institute

    Google Scholar 

  99. Sternberg D. E., VanKammen D. P., Lerner P., Bunney W. E. (1982): Schizophrenia: dopamine beta-hydroxylase activity and treatment response. Science 216: 1423–1425

    PubMed  CAS  Google Scholar 

  100. Strange B. A., Dolan R. J. (2001): Adaptive anterior hippocampal responses to oddball stimuli. Hippocampus 11: 690–698

    PubMed  CAS  Google Scholar 

  101. Sundgren P. C., Dong Q., Gomez-Hassan D., Mukherji S. K., Maly P., Welsh R. (2004): Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46: 339–350

    PubMed  CAS  Google Scholar 

  102. Tamminga C. A., Holcomb H. H. (2005): Phenotype of schizophrenia: a review and formulation. Mol. Psychiatry 10: 27–39

    PubMed  CAS  Google Scholar 

  103. Tang Y., Buxbaum S. G., Waldman I., Anderson G. M., Zabetian C. P., Kohnke M. D., et al (2006): A single nucleotide polymorphism at DBH, possibly associated with attention-deficit/hyperactivity disorder, associates with lower plasma dopamine beta-hydroxylase activity and is in linkage disequilibrium with two putative functional single nucleotide polymorphisms. Biol. Psychiatry 60: 1034–1038

    PubMed  CAS  Google Scholar 

  104. Tarazi F. I., Baldessarini R. J. (1999): Brain dopamine D(4) receptors: basic and clinical status. Int. J. Neuropsychopharmcol. 2: 41–58

    CAS  Google Scholar 

  105. Tarazi F. I., Baldessarini R. J. (1999): Dopamine D4 receptors: significance for molecular psychiatry at the millennium. Mol. Psychiatry 4: 529–538

    PubMed  CAS  Google Scholar 

  106. Thaker G. K. (2000): Defining the schizophrenia phenotype. Curr. Psychiatry Rep. 2: 398–403

    PubMed  CAS  Google Scholar 

  107. The International HapMap Consortium. A haplotype map of the human genome. Nature 437:1299–1320, 2005

    Google Scholar 

  108. Thompson P. M., Cannon T. D., Narr K. L., van Erp T., Poutanen V. P., Huttunen M. et al (2001): Genetic influences on brain structure. Nat. Neurosci. 4: 1253–1258

    PubMed  CAS  Google Scholar 

  109. Vawter M. P., Shannon W. C., Ferran E., Matsumoto M., Overman K., Hyde T. M. et al (2004): Gene expression of metabolic enzymes and a protease inhibitor in the prefrontal cortex are decreased in schizophrenia. Neurochem. Res. 29: 1245–1255

    PubMed  CAS  Google Scholar 

  110. Waldemar G., Hogh P., Paulson O. B. (1997): Functional brain imaging with single-photon emission computed tomography in the diagnosis of Alzheimer’s disease. Int. Psychogeriatr. 9(Suppl 1):223–227

    PubMed  Google Scholar 

  111. Yamamoto K., Cubells J. F., Gelernter J., Benkelfat C., Lalonde P., Bloom D., et al (2003): Dopamine beta-hydroxylase (DBH) gene and schizophrenia phenotypic variability: a genetic association study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 117: 33–38

    PubMed  Google Scholar 

  112. Yu Z., Chen J., Shi H., Stoeber G., Tsang S. Y., Xue H. (2006): Analysis of GABRB2 association with schizophrenia in German population with DNA sequencing and one-label extension method for SNP genotyping. Clin. Biochem. 39: 210–218

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health, under RO1 grants MH60504, MH43775, MH52886, EB000840, EB005846, and an NIMH MERIT award (to GP), as well as SBIR R43 grant MH075481 (to GR).

Financial Disclosures

Dr. Windemuth, Dr. Ruaño, and Mr. Kocherla report financial interest in Genomas Inc. in the form of salary, stock, and stock options. Dr. Calhoun and Dr. Pearlson report no financial interests in companies or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Windemuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windemuth, A., Calhoun, V.D., Pearlson, G.D. et al. Physiogenomic Analysis of Localized fMRI Brain Activity in Schizophrenia. Ann Biomed Eng 36, 877–888 (2008). https://doi.org/10.1007/s10439-008-9475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9475-2

Keywords

Navigation