Skip to main content
Log in

Culture Duration Modulates Collagen Hydrolysate-Induced Tissue Remodeling in Chondrocyte-Seeded Agarose Hydrogels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Media supplementation with collagen hydrolysate was hypothesized to increase the collagen content in engineered cartilage. By d28, hydrolysate at 0.5 mg/mL increased type II collagen content and 1 mg/mL increased mechanical properties, total collagen content, and type II collagen content over controls. By d42, however, controls possessed the highest GAG content and compressive Young’s modulus. Real-time PCR found that 1 mg/mL increased type II collagen gene expression in d0 constructs, but increased MMP expression with no effect on type II collagen on d28. A 10 mg/mL concentration produced the lowest tissue properties, the lowest type II collagen gene expression on d0, and the highest MMP gene expression on d28. These results indicate that the duration of culture modulates the response of chondrocytes to collagen hydrolysate in 3D culture, transforming the response from positive to negative. Therefore, collagen hydrolysate as a media supplement is not a viable long-term method to improve the collagen content of engineered cartilage tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aigner T., Zien A., Gehrsitz A., Gebhard P. M., McKenna L. 2001 Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum. 44: 2777–2789

    Article  PubMed  CAS  Google Scholar 

  2. Bau B., Gebhard P. M., Haag J., Knorr T., Bartnik E., Aigner T. 2002 Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum. 46: 2648–2657

    Article  PubMed  CAS  Google Scholar 

  3. Bello A. E., Oesser S. 2006 Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr. Med. Res. Opin. 22: 2221–2232

    Article  PubMed  CAS  Google Scholar 

  4. Benya P. D., Shaffer J. D. 1982 Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224

    Article  PubMed  CAS  Google Scholar 

  5. Buschmann M. D., Gluzband Y. A., Grodzinsky A. J., Kimura J. H., Hunziker E. B. 1992 Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10: 745–758

    Article  PubMed  CAS  Google Scholar 

  6. Byers B. A., Mauck R. L., Chiang I., Tuan R. S. 2006 Temporal exposure of TGF-beta3 under serum-free conditions enhances biomechanical and biochemical maturation of tissue-engineered cartilage. Trans. Orthop. Res. 31: 43

    Google Scholar 

  7. Carver S. E., Heath C. A. 1999 Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol. Bioeng. 62: 166–174

    Article  PubMed  CAS  Google Scholar 

  8. Chubinskaya S., Kuettner K. E., Cole A. A. 1999 Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. Lab. Invest. 79: 1669–1677

    PubMed  CAS  Google Scholar 

  9. Eyre D. R., McDevitt C. A., Billingham M. E., Muir H. 1980 Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis. Biochem. J. 188: 823–837

    PubMed  CAS  Google Scholar 

  10. Farndale R. W., Sayers C. A., Barrett A. J. 1982 A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9: 247–248

    Article  PubMed  CAS  Google Scholar 

  11. Fichter M., Korner U., Schomburg J., Jennings L., Cole A. A., Mollenhauer J. 2006 Collagen degradation products modulate matrix metalloproteinase expression in cultured articular chondrocytes. J. Orthop. Res. 24: 63–70

    Article  PubMed  CAS  Google Scholar 

  12. Fosang A. J., Last K., Knauper V., Murphy G., Neame P. J. 1996 Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 380: 17–20

    Article  PubMed  CAS  Google Scholar 

  13. Giannoni P., Pagano A., Maggi E., Arbico R., Randazzo N., Grandizio M., Cancedda R., Dozin B. 2005 Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthr. Cartil. 13: 589–600

    Article  PubMed  CAS  Google Scholar 

  14. Gooch K. J., Blunk T., Courter D. L., Sieminski A. L., Bursac P. M., Vunjak-Novakovic G., Freed L. E. 2001 IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Biophys. Res. Commun. 286: 909–915

    Article  PubMed  CAS  Google Scholar 

  15. Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A. R. 1994 Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93: 1722–1732

    Article  PubMed  CAS  Google Scholar 

  16. Honn K. V., Singley J. A., Chavin W. 1975 Fetal bovine serum: a multivariate standard. Proc. Soc. Exp. Biol. Med. 149: 344–347

    PubMed  CAS  Google Scholar 

  17. Hughes C., Murphy G., Hardingham T. E. 1991 Metalloproteinase digestion of cartilage proteoglycan. Pattern of cleavage by stromelysin and susceptibility to collagenase. Biochem. J. 279(Pt 3): 733–739

    PubMed  CAS  Google Scholar 

  18. Kelly T. A., Ng K. W., Wang C. C., Ateshian G. A., Hung C. T. 2006 Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J. Biomech. 39: 1489–1497

    Article  PubMed  Google Scholar 

  19. Kisiday J. D., Kurz B., DiMicco M. A., Grodzinsky A. J. 2005 Evaluation of medium supplemented with insulin-transferrin-selenium for culture of primary bovine calf chondrocytes in three-dimensional hydrogel scaffolds. Tissue Eng. 11: 141–151

    Article  PubMed  CAS  Google Scholar 

  20. Kozaci L. D., Brown C. J., Adcocks C., Galloway A., Hollander A. P., Buttle D. J. 1998 Stromelysin 1, neutrophil collagenase, and collagenase 3 do not play major roles in a model of chondrocyte mediated cartilage breakdown. Mol. Pathol. 51: 282–286

    Article  PubMed  CAS  Google Scholar 

  21. Lin W., Shuster S., Maibach H. I., Stern R. 1997 Patterns of hyaluronan staining are modified by fixation techniques. J. Histochem. Cytochem. 45: 1157–1163

    PubMed  CAS  Google Scholar 

  22. Livak K. J., Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408

    Article  PubMed  CAS  Google Scholar 

  23. Mankin H. J., Mow V. C., Buckwalter J. A., Iannotti J. P., Ratcliffe A. 2000 Articular cartilage structure, composition, and function. In: Buckwalter J. A., Einhorn T. A., Simon S. R. (eds) Orthopaedic Basic Science. Biology and Biomechanics of the Musculoskeletal System. American Academy of Orthopaedic Surgeons, Rosemont, pp 443–470

    Google Scholar 

  24. Maroudas A., Palla G., Gilav E. 1992 Racemization of aspartic acid in human articular cartilage. Connect. Tissue Res. 28: 161–169

    PubMed  CAS  Google Scholar 

  25. Martin I., Obradovic B., Treppo S., Grodzinsky A. J., Langer R., Freed L. E., Vunjak-Novakovic G. 2000 Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37: 141–147

    PubMed  CAS  Google Scholar 

  26. Mauck R. L., Nicoll S. B., Seyhan S. L., Ateshian G. A., Hung C. T. 2003 Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9: 597–611

    Article  PubMed  CAS  Google Scholar 

  27. Mauck R. L., Soltz M. A., Wang C. C., Wong D. D., Chao P. H., Valhmu W. B., Hung C. T., Ateshian G. A. 2000 Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122: 252–260

    Article  PubMed  CAS  Google Scholar 

  28. Mauck R. L., Wang C. C., Oswald E. S., Ateshian G. A., Hung C. T. 2003 The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11: 879–890

    Article  PubMed  CAS  Google Scholar 

  29. Mouw J. K., Case N. D., Guldberg R. E., Plaas A. H., Levenston M. E. 2005 Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartil. 13: 828–836

    Article  PubMed  CAS  Google Scholar 

  30. Murphy G., Cockett M. I., Ward R. V., Docherty A. J. 1991 Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem. J. 277: 277–279

    PubMed  CAS  Google Scholar 

  31. Ng K. W., Mauck R. L., Statman L. Y., Lin E. Y., Ateshian G. A., Hung C. T. 2006 Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct. Biorheology 43: 497–507

    PubMed  Google Scholar 

  32. Ng K. W., Wang C. C., Mauck R. L., Kelly T. A., Chahine N. O., Costa K. D., Ateshian G. A., Hung C. T. 2005 A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J. Orthop. Res. 23: 134–141

    Article  PubMed  Google Scholar 

  33. Oesser S., Seifert J. 2003 Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res. 311: 393–399

    PubMed  CAS  Google Scholar 

  34. Price P. J., Gregory E. A. 1982 Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro 18: 576–584

    PubMed  CAS  Google Scholar 

  35. Riesle J., Hollander A. P., Langer R., Freed L. E., Vunjak-Novakovic G. 1998 Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J. Cell Biochem. 71: 313–327

    Article  PubMed  CAS  Google Scholar 

  36. Seidel J. O., Pei M., Gray M. L., Langer R., Freed L. E., Vunjak-Novakovic G. 2004 Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 41: 445–458

    PubMed  CAS  Google Scholar 

  37. Stegemann, H., Stalder K. 1967 Determination of hydroxyproline. Clin. Chim. Acta 18: 267–273

    Article  PubMed  CAS  Google Scholar 

  38. Tchetina E. V., Kobayashi M., Yasuda T., Meijers T., Pidoux I., Poole A. R. 2007 Chondrocyte hypertrophy can be induced by a cryptic sequence of type II collagen and is accompanied by the induction of MMP-13 and collagenase activity: implications for development and arthritis. Matrix Biol. 26: 247–258

    Article  PubMed  CAS  Google Scholar 

  39. Verzijl N., DeGroot J., Thorpe S. R., Bank R. A., Shaw J. N., Lyons T. J., Bijlsma J. W., Lafeber F. P., Baynes J. W., TeKoppele J. M. 2000 Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275: 39027–39031

    Article  PubMed  CAS  Google Scholar 

  40. Williamson A. K., Masuda K., Thonar E. J., Sah R. L. 2003 Growth of immature articular cartilage in vitro: correlated variation in tensile biomechanical and collagen network properties. Tissue Eng. 9: 625–634

    Article  PubMed  CAS  Google Scholar 

  41. Wong M., Ponticiello M., Kovanen V., Jurvelin J. S. 2000 Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33: 1049–1054

    Article  PubMed  CAS  Google Scholar 

  42. Yasuda T., Tchetina E., Ohsawa K., Roughley P. J., Wu W., Mousa A., Ionescu M., Pidoux I., Poole A. R. 2006 Peptides of type II collagen can induce the cleavage of type II collagen and aggrecan in articular cartilage. Matrix Biol. 25: 419–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health (AR46532, AR46568). Special thanks to Jeremy Kaufmann at Gelita USA for providing the collagen hydrolysate used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark T. Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K.W., Saliman, J.D., Lin, E.Y. et al. Culture Duration Modulates Collagen Hydrolysate-Induced Tissue Remodeling in Chondrocyte-Seeded Agarose Hydrogels. Ann Biomed Eng 35, 1914–1923 (2007). https://doi.org/10.1007/s10439-007-9373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9373-z

Keywords

Navigation