Skip to main content
Log in

Vascular Dynamics of a Shape Memory Polymer Foam Aneurysm Treatment Technique

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The vascular dynamics of a shape memory polymer foam aneurysm treatment technique are assessed through the simulated treatment of a generic basilar aneurysm using coupled fluid dynamics and heat transfer calculations. The shape memory polymer foam, which expands to fill the aneurysm when heated, is modeled at three discrete stages of the treatment procedure. To estimate an upper bound for the maximum amount of thermal damage due to foam heating, a steady velocity is specified through the basilar artery, corresponding to a minimum physiological flow velocity over a cardiac cycle. During expansion, the foam alters the flow patterns within the aneurysm by shielding the aneurysm dome from a confined jet that issues from the basilar artery. The time scales for thermal damage to the artery walls and surrounding blood flow are computed from the temperature field. The flow through the post-treatment bifurcation is comprised of two counter-rotating vortex tubes that are located beneath the aneurysm neck and extend downstream into the outlet arteries. Beneath the aneurysm neck, a marked increase in the wall shear stress is observed due to the close proximity of the counter-rotating vortex tubes to the artery wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

CFD:

computational fluid dynamics

GDC:

Guglielmi detachable coil

SMP:

shape memory polymer

References

  1. Abela G. S., Crea F., Smith W., Pepine C. J., Conti C. R. (1985) In vitro effects of argon laser radiation on blood: quantitative and morphologic analysis. J. Am. Coll. cardiol 5:231-237

    Article  PubMed  CAS  Google Scholar 

  2. Agah R., Pearce J. A, Welch A. J., Motamedi M. (1994) Rate process model for arterial tissue thermal damage: Implications on vessel photocoagulation. Lasers Surg. Med 15:176-184

    Article  PubMed  CAS  Google Scholar 

  3. Ahuja A. A., Hergenrother R. W., Strother C. M. et al. (1993) Platinum coil coatings to increase thrombogenicity—a preliminary-study in rabbits. Am. J. Neuroradiol 14(4):794-798

    PubMed  CAS  Google Scholar 

  4. Azuma T. (1964) The flow through blood vessels. Biorheology 2:159-161

    Google Scholar 

  5. Balasubramaniam T., Bowman H. (1977) Thermal-conductivity and thermal-diffusivity of biomaterials—simultaneous measurement technique. J. Biomech. Eng. 99(7):101–102

    Google Scholar 

  6. Ballyk P. D., Steinman D. A., Ethier C. R. (1994) Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586

    PubMed  CAS  Google Scholar 

  7. Bammer R., Hope T. A., Aksoy M., Alley M. T. (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5 T and 3.0 T in combination with parallel imaging. Magn. Reson. Med. 57:127–140

    Article  PubMed  Google Scholar 

  8. Barbee J. H. (1973) The effect of temperature on the relative viscosity of human blood. Biorheology 10:1–5

    PubMed  CAS  Google Scholar 

  9. Baranov, V. Y., D. I. Chekhov, A. G. Leonov, P. G. Leonov, O. M. Ryaboshapka, S. Y. Semenov et al. Heat-induced changes in optical properties of human whole blood in vitro. In: Optical Diagnostics of Biological Fluids IV, editor by AVPTA. Bellingham, WA: SPIE, 1999, pp. 180–187

  10. Blackburn H. M., Mansour N. N., Cantwell B. J. (1996) Topology of fine-scale motions in a turbulent channel. JFM 310:269–292

    CAS  Google Scholar 

  11. Boecher-Schwarz H. G., Ringel K., Kopacz L., Heimann A., Kempski O. (2000) Ex vivo study of the physical effect of coils on pressure and flow dynamics in experimental aneurysms. AJNR 21:1532–1536

    PubMed  CAS  Google Scholar 

  12. Bugliarello G., Hayden J. W. (1963) Detailed characteristics of the flow of blood in vitro. Trans. Soc. Rheol. 7:209-230

    Article  Google Scholar 

  13. Buller C. E., Culp S. C., Sketch M. H., Phillips H. R., Virmani R., Stack R. S. (1993) Thermal-perfusion balloon coronary angioplasty: In vivo evaluation. Am. Heart J. 125(1):226-233

    Article  PubMed  CAS  Google Scholar 

  14. Chien S., Usami S., Dellenback R. J., Bryant C. A. (1971) Comparative hemorheology - hemotological implications of species differences in blood viscosity. Biorheology 8:35–57

    PubMed  CAS  Google Scholar 

  15. Cho Y. I., Kensey K. R. (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262

    PubMed  CAS  Google Scholar 

  16. Çinar Y., Şenyol A. M., Duman K. (2001) Blood viscosity and blood pressure: role of temperature and hyperglycemia. AJH 14:433-438

    PubMed  Google Scholar 

  17. Cloft H. J., Joseph G. J., Tong F. C., Goldstein J. H., Dion J. E. (2000) Use of three-dimensional Guglielmi detachable coils in the treatment of wide-necked cerebral aneurysms. AJNR 21:1312–1314

    PubMed  CAS  Google Scholar 

  18. Cognard C., Weill A., Castaings L., Rey A., Moret J. (1998) Intracranial berry aneurysms: angiographic and clinical results after endovascular treatment. Radiology 206:499-510

    PubMed  CAS  Google Scholar 

  19. Cokelet, G. R. The Rheology of Human Blood, Thesis, Sc.D., MIT, Cambridge, Mass

  20. Conte, S. D., and C. De Boor. Elementary Numerical Analysis, McGraw-Hill, 1980

  21. Debrun G., Lacour P., Vinuela F., Fox A., Drake C. G., Caron J. P. (1981) Treatment of 54 traumatic carotid-cavernous fistulas. J. Neurosurg. 55(5):678–692

    PubMed  CAS  Google Scholar 

  22. Dubief Y., Delcayre F. (2000) On coherent-vortex identification in turbulence. J. Turbulence 1:1–22

    Article  Google Scholar 

  23. Duncan D. D., et al. (1990) The effect of compliance on wall shear in casts of a human aortic bifurcation. J. Biomech. Eng. 112:183–188

    PubMed  CAS  Google Scholar 

  24. Eckmann D. M., Bowers S., Stecker M., Cheung A.T. (2000) Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth. Analg. 91:539-545

    Article  PubMed  CAS  Google Scholar 

  25. Ensight v. 8.0, Computational Engineering International, http://www.ensight.com, 2005

  26. Ferguson G. G. (1972) Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J. Neurosurg. 37:666-677

    PubMed  CAS  Google Scholar 

  27. Fernandez Z. A., Guglielmi G., Viñela F., Duckwiler G. R. (1994) Endovascular occlusion of intracranial aneurysms with electrically detachable coils: correlation of aneurysm neck size and treatment results. AJNR 15:815–820

    Google Scholar 

  28. Fry D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22(2):165–197

    PubMed  CAS  Google Scholar 

  29. Fung Y. C. (1993) Biomechanics: Mechanical properties of living tissues, 2nd Edition. Springer, Berlin

    Google Scholar 

  30. Graham S. J., Stanisz G. J., Kecojevic A., Bronskill M. J., Henkelman R. M. (1999) Analysis of changes in MR properties of tissues after heat treatment. Magn. Reson. Med. 42(6):1061-1071

    Article  PubMed  CAS  Google Scholar 

  31. Groden C., Laudan J., Gatchell S., Zeumer H. (2001) Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J. Cereb. Blood Flow Metab. 21(12):1464–1471

    Article  PubMed  CAS  Google Scholar 

  32. Hartman J., Small W., Wilson T. S., Brock J., Buckley P. R., Benett W. J., Loge J. M., Maitland D. J. (2007) Embolectomy in a rabbit acute arterial occlusion model using a movel electromechanical extraction device. AJNR Am. J. Neuroradiol. 28:872–874

    PubMed  CAS  Google Scholar 

  33. Hinghofer-Szalkay H. (1985) Volume and density changes of biological fluids with temperature. J. Appl. Physiol. 59:1686–1689

    PubMed  CAS  Google Scholar 

  34. Horowitz M., Samson D., Purdy P. (1997) Does electrothrombosis occur immediately after embolization of an aneurysm with Guglielmi detachable coils? AJNR 18:510–513

    PubMed  CAS  Google Scholar 

  35. Humphrey J. D., Na S. (2002) Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30:509–523

    Article  PubMed  CAS  Google Scholar 

  36. Incropera F. P., DeWitt D. P. (1990) Fundamentals of Heat and Mass Transfer. John Wiley & Sons, New York

    Google Scholar 

  37. Johnston B. M., Johnston P. R., Corney S., Kilpatrick D. (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37:709–720

    Article  PubMed  Google Scholar 

  38. Kallmes D. F., Borland M. K., Cloft H. J. et al. (1998) In vitro proliferation and adhesion of basic fibroblast growth factor-producing fibroblasts on platinum coils. Radiology 206(1):237–243

    PubMed  CAS  Google Scholar 

  39. Kallmes D. F., Williams A. D., Cloft H. J., Lopez M. B. S., Hankins G. R., Helm G. A. (1998) Platinum coil-mediated implantation of growth factor-secreting endovascular tissue grafts: an in vivo study. Radiology 207:519–523

    PubMed  CAS  Google Scholar 

  40. Kanaan Y., Kaneshiro D., Fraser K., Wang D., Lanzino G. (2005) Evolution of endovascular therapy for aneurysm treatment: Historical overview. Neurosurg. Focus 18(2):E2

    Article  PubMed  Google Scholar 

  41. Kwan E. S., Heilman C. B., Shucart W. A., et al. (1991) Enlargement of basilar artery aneurysms following balloon occlusion—“water-hammer effect." Report of two cases. J. Neurosurg. 75:963–968

    PubMed  CAS  Google Scholar 

  42. Lang J., Erdmann B., Seebass M. (1999) Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 46:1129–1138

    Article  PubMed  CAS  Google Scholar 

  43. Leal, L. G. Laminar Flow and Convective Processes. Butterworth-Heinemann, 1992

  44. Lendlein A., Langer R. (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Article  PubMed  Google Scholar 

  45. Li Z., Kleinstreuer C. (2005) Fluid-structure interaction effects on sac-blood pressure and wall stress in a stented aneurysm. J. Biomech. Eng. 127(4):662–671

    Article  PubMed  CAS  Google Scholar 

  46. Leipzig T. J., Mullan S. F. (1983) Deflation of metrizamide-filled balloon used to occlude a carotid-cavernous fistula. Case report. J. Neurosurg. 59(3):524–528

    PubMed  CAS  Google Scholar 

  47. MacDonald D. J., Finlay H. M., Canham P. B. (2000) Directional wall strength in saccular brain aneurysms from polarized light microscopy. Ann. Biomed. Eng. 28:533–542

    Article  PubMed  CAS  Google Scholar 

  48. Marcuz R., et al. (1985) Laser surgery in enclosed spaces: a review. Lasers Surg. Med. 5:199–218

    Article  Google Scholar 

  49. Mehringer C. M., Hieshima G. B., Grinnell V. S., Tsai F. Y., Bentson J. R., Hasso A. N., Thompson J. R., Strother C., Pribram H. F. (1983) Therapeutic embolization for vascular trauma of the head and neck. AJNR Am. J. Neuroradiol. 4(2):137–142

    PubMed  CAS  Google Scholar 

  50. Merrill E. W., Gilliland E. R., Cokelet G., Shin H., Britten A., Wells R. E, Jr. (1963) Rheology of human blood, near and at zero flow. Biophys. J. 3:199–213

    PubMed  CAS  Google Scholar 

  51. Metcalfe A., Desfaits A.-C., Salazkin I. et al. (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491-497

    Article  PubMed  CAS  Google Scholar 

  52. Murayama Y., Viñela F., Suzuki Y., Akiba Y., Duckwiler G. R., Gobin Y. P., Vinters H. V., Iwaki M., Abe T. (1999) Development of the biologically active Guglielmi detachable coil for the treatment of cerebral Aaneurysms. Part II: an experimental study in a swine aneurysm model. Am. J. Neuroradiol. 20:1992–1999

    PubMed  CAS  Google Scholar 

  53. Murayama Y., Viñela F., Tateshima S., Viñela F. Jr., Akiba Y. (2000) Endovascular treatment of experimental aneurysms by use of a combination of liquid embolic agents and protective devices. Am. J. Neuroradiol. 21:1726–1735

    PubMed  CAS  Google Scholar 

  54. Murayama Y., Viñela F., Tateshima S. (2002) Matrix: New bioabsorbable polymeric coils for the treatment of intracranial aneurysms, Int. Congress Ser. 1247:119–126

    Article  Google Scholar 

  55. Neumann F.-J., Schmid-Schönbein H., Malotta H. (1987) Effect of temperature dependent changes in mechanical stability of red cell aggregates on relative apparent whole blood viscosity. Biorheology 24:463–472

    PubMed  CAS  Google Scholar 

  56. Nicoud, F. Hemodynamic changes induced by stenting in elastic arteries. Center for Turbulence Research. Ann. Res. Briefs, pp. 335–347

  57. Nilsson A. M. K., Lucassen G. W., Verkruysse W., Andersson-Engels S., Van Gemert M. J. C. (1997) Changes in optical properties of human whole blood in vitro due to slow heating. Photochem. Photobiol. 65:366–373

    PubMed  CAS  Google Scholar 

  58. Parlea L., Fahrig R., Holdsworth D. W., Lownie S. P. (1999) An analysis of the geometry of saccular intracranial aneurysms. AJNR 20(6):1079–1089

    PubMed  CAS  Google Scholar 

  59. Pearce J., Thomsen S. (1995) Rate process analysis of thermal damage. In: Welch A. J., van Gemert M. J. C. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Plenum Press, New York, pp. 561–605

    Google Scholar 

  60. Perktold K., Rappitsch G. (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7):845–856

    Article  PubMed  CAS  Google Scholar 

  61. Perry A. E., Chong M. S. (1994) Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53:357–374

    Article  Google Scholar 

  62. Pfefer T. J., Choi B., Vargas G., McNally K. M., Welch A. J. (2000) Pulsed laser-induced thermal damage in whole blood. J. Biomech. Eng. 122(2):196–202

    Article  PubMed  CAS  Google Scholar 

  63. Rand P., La Combe E., Hunt H. E., Austin W. H. (1964) Viscosity of normal blood under normothermic and hypothermic conditions. J. Appl. Physiol. 19:117–122

    PubMed  CAS  Google Scholar 

  64. Raftopoulos C., Mathurin P., Boscherini D., Billa R. F., van Boven M., Hantson P. (2000) Prospective analysis of aneurysm treatment in a series of 103 consecutive patients when endovascular embolization is considered the first option. J. Neurosurg. 93:175–182

    PubMed  CAS  Google Scholar 

  65. Samaras T., Regli P., Kuster N. (2000) Electromagnetic and heat transfer computation for non-ionizing radiation dosimetry. Phys. Med. Biol. 45:2233–2246

    Article  PubMed  CAS  Google Scholar 

  66. Serbinenko F. A. (1974) Balloon catheterization and occlusion of major cerebral vessels. J. Neurosurg 41(2):125–145

    PubMed  CAS  Google Scholar 

  67. Small, W., P. R. Buckley, T. S. Wilson, W. J. Benett, J. Hartman, D. Saloner, and D. J. Maitland. Shape memory polymer stent with expandable foam: a new concept for endovascular embolization of fusiform aneurysms. IEEE Trans. Biomed. Eng. 54(6):1157–1160, 2007

    Article  PubMed  Google Scholar 

  68. Small, W., T. S. Wilson, P. R. Buckley, W. J. Benett, J. M. Loge, J. Hartman, and D. J. Maitland. Prototype fabrication and preliminary in vitro testing of a shape memory endovascular thrombectomy device. IEEE Trans. Biomed. Eng. 54(9), 2007 (in press)

  69. STAR-CD v. 3.24. CD-Adapco Group, http://www.cd-adapco.com, 2005

  70. Steiger H. J., Poll A., Licpsch D., Reulen H. -J. (1987) Haemodynamic stress in lateral saccular aneurysms. Acta Neurochirurg. 86:98–105

    Article  CAS  Google Scholar 

  71. Stuhne, G. R., and D. A. Steinman. Mesh resolution requirements for the numerical simulation of flow through stented aneurysms. Summer Bioengineering Conference, June 25–29, Sonesta Beach Resort, Key Biscayne, Florida, 2003

  72. Sundukov A. N., Postnikova M. A., Zvereva K. V., Ivanov P. A. (1978) Thermal factors involved in rheology of blood of healthy persons and of persons suffering from myocardial infarcts. Heat Transfer–Soviet Res. 10:94–97

    Google Scholar 

  73. Taki W., Handa H., Yamagata S., Matsuda I., Yonekawa Y., Ikada Y., Iwata H. (1979) Balloon embolization of a giant aneurysm using a newly developed catheter. Surg. Neurol. 12(5):363–365

    PubMed  CAS  Google Scholar 

  74. Taki W., Handa H., Yamagata S., Ishikawa M., Iwata H., Ikada Y. (1980) Radiopaque solidifying liquids for releasable balloon technique: a technical note. Surg. Neurol 13(2):140–142

    PubMed  CAS  Google Scholar 

  75. Tamatani S., Ozawa T., Minakawa T., et al. (1997) Histological interaction of cultured endothelial cells and endovascular embolic materials coated with extracellular matrix. J. Neurosurg. 86(1):109–112

    PubMed  CAS  Google Scholar 

  76. Thomsen S. (1991) Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem. Photobiol. 53:825–835

    PubMed  CAS  Google Scholar 

  77. Tong F. C., Cloft H. J., Dion J. E. (2000) Endovascular treatment of intracranial aneurysms with Guglielmi detachable coils: Emphasis on new techniques. J. Clin. Neurosci. 7(3):244–253

    Article  PubMed  CAS  Google Scholar 

  78. Valvano J. W., Chitsabesan B. (1987) Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque. Lasers Life Sci. 1(3):219–229

    Google Scholar 

  79. Vinuela F., Duckwiler G., Mawad M., et al. (1997) Guglielmi detachable coil embolization of acute intracranial aneurysm: perioperative anatomical and clinical outcome in 403 patients. J. Neurosurg. 86(3):475–482

    Article  PubMed  CAS  Google Scholar 

  80. Walsh, J. T., T. J. Flotte, T. F. Deutsch. Er:Yag laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg. Med. 9:314–326

    Article  PubMed  Google Scholar 

  81. Willinsky R. A. (1999) Detachable coils to treat intracranial aneurysms. Can. Med. Assoc. J. 161(9):1136

    CAS  Google Scholar 

  82. Wilson, T. S., and D. J. Maitland. Shape memory polymer foams for endovascular therapies, U.S. Patent US20050075405 A1, 2005

  83. Zhao S. Z. et al. (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank K. Salari for his guidance on the CFD simulations and P. Castellucci, J. Paschkewitz, and W. Small for their helpful feedback in the manuscript preparation. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Major support provided by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering, Grant R01EB000462. Additional support was provided by a LLNL Directed Research and Development Grant (04-ERD-093). UCRL-JRNL-219283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, J., Maitland, D., Wilson, T. et al. Vascular Dynamics of a Shape Memory Polymer Foam Aneurysm Treatment Technique. Ann Biomed Eng 35, 1870–1884 (2007). https://doi.org/10.1007/s10439-007-9358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9358-y

Keywords

Navigation