Skip to main content
Log in

Regional Variations in the Apparent and Tissue-Level Mechanical Parameters of Vertebral Trabecular Bone with Aging Using Micro-Finite Element Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to obtain the apparent and tissue-level mechanical parameters of vertebral cancellous bones using micro-finite element analysis, and to identify the regional variations and their relative differences with respect to aging. Ninety trabecular specimens were obtained from six normal L4 vertebral bodies of six male cadavers in two age groups, three aged 62 years and three aged 69 years, and then were scanned using a high-resolution micro-Computed Tomography (micro-CT) system. The obtained micro-CT reconstruction models were then converted to micro-finite element models. Micro-finite element analyses were done to determine the apparent Young’s moduli and tissue-level Von Mises stress distribution for each trabecular specimen on the longitudinal direction, and medial–lateral and anteriorposterior directions (transverse directions), respectively. Regional variations about the mechanical parameters at both apparent and tissue levels in different transverse layers and vertical columns within and between the two age groups were then analyzed. The results showed significant decreases in the apparent Young’s moduli in each direction with aging, and those in the two transverse directions decreased more with aging compared with the longitudinal direction. Furthermore, there were no statistically significant differences between the mechanical parameters in the two transverse directions in both age groups. This study offered an insight into the distributions and variations of mechanical properties within a vertebral body. The mechanical parameters calculated from this study may help in a better understanding of regional fracture risks and the vertebral fracture mechanism in the prevention of osteoporotic fracture in elder individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Adams M. A., Mcnally D. S., Dolan P. (1996) ‘Stress’ distributions inside intervertebral discs—the effects of age and degeneration. J. Bone Joint Surg. 78-B:965–972

    Article  Google Scholar 

  2. Borah B., Dufresne T. E., Chmielewski P. A., Gross G. J., Prenger M. C., Phipps R. J. (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J. Bone Miner. Res. 17:1139–1147

    Article  PubMed  CAS  Google Scholar 

  3. Chung H., Wehrli F. W., Williams J. L., Kugelmass S. D. (1993) Relationship between NMR transverse relaxation, trabecular bone architecture, and strength. Proc. Natl. Acad. Sci. U.S.A. 90:10250–10254

    Article  PubMed  CAS  Google Scholar 

  4. Ding M., Hvid I. (2000) Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26:291–295

    Article  PubMed  CAS  Google Scholar 

  5. Ding M., Odgaard A., Linde F., Hvid I. (2002) Age-related variations in the microstructure of human tibial cancellous bone. J. Orthop. Res. 20:615–621

    Article  PubMed  Google Scholar 

  6. Ferguson S. J., Steffen T. (2003) Biomechanics of the aging spine. Eur. Spine J. 12:S97–S103

    Article  PubMed  Google Scholar 

  7. Gong H., Zhang M., Yeung H. Y., Qin L. (2005) Regional variations in microstructural properties of vertebral trabeculae with ageing. J. Bone Miner. Metab. 23(2):174–180

    Article  PubMed  Google Scholar 

  8. Gong H., Zhang M., Qin L., Lee K. K. H., Guo X., Shi S. Q. (2006) Regional variations in microstructural properties of vertebral trabeculae with structural groups. Spine 31(1):24–32

    Article  PubMed  Google Scholar 

  9. Hansson T., Roos B. (1981) The relationship between bone mineral content, experimental compression fractures, and disc degeneration in lumbar vertebrae. Spine 6:147–153

    Article  PubMed  CAS  Google Scholar 

  10. Hansson T., Keller T. S., Panjabi M. M. (1987) A study of the compressive properties of lumbar vertebral trabeculae: effects of tissue characteristics. Spine 12:56–62

    Article  PubMed  CAS  Google Scholar 

  11. Homminga J., McCreadie B. R., Ciarelli T. E., Weinans H., Goldstein S. A., Huiskes R. (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structural level, not on the bone hard tissue level. Bone 30(5):759–764

    Article  PubMed  CAS  Google Scholar 

  12. Homminga J., Van Rietbergen B., Lochműller E. M., Weinans H., Eckstein F., Huiskes R. (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516

    Article  PubMed  CAS  Google Scholar 

  13. Homminga J., Weinans H., Gowin W., Felsenberg D., Huiskes R. (2001) Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 26(14):1555–1561

    Article  PubMed  CAS  Google Scholar 

  14. Judex S., Boyd S., Qin Y. X., Turner S., Ye K., Muller R., Rubin C. (2003) Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann. Biomed. Eng. 31:12–20

    Article  PubMed  Google Scholar 

  15. Kabel J., Van Rietbergen B., Odgaard A., Huiskes R. (1999) Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25:1159–1164

    Google Scholar 

  16. Keaveny T. M., Wachtel E. F., Ford C. M., Hayes W. C. (1994) Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J. Biomech. 27:1137–1146

    Article  PubMed  CAS  Google Scholar 

  17. Keller T. S., Hansson T. H., Abram A. C., Spengler D. M., Panjabi M. M. (1989) Regional variations in the compressive properties of lumbar vertebral trabeculae—effects of disc degeneration. Spine 14:1012–1019

    Article  PubMed  CAS  Google Scholar 

  18. Lau E. M. C., Woo J., Leung P. C. (1993) Low bone mineral density, grip strength and skinfold thickness are important risk factors for hip fracture in Hong Kong Chinese. Osteoporos. Int. 3:66–69

    Article  PubMed  CAS  Google Scholar 

  19. Melton L. J., Chrischilles E. A., Cooper C., Lane A. W., Riggs B. L. (1992) Perspective: how many women have osteoporosis?. J Bone Miner. Res. 7:1005–1010

    Article  PubMed  Google Scholar 

  20. Morgan E. F., Bayraktar H. H., Keaveny T. M. (2003) Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36:897–904

    Article  PubMed  Google Scholar 

  21. Mosekilde L. (1988) Age-related changes in vertebral trabecular bone architecture—assessed by a new method. Bone 9:247–250

    Article  PubMed  CAS  Google Scholar 

  22. Pollintine P., Dolan P., Tobias J. H., Adams M. A. (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body. Spine 29:774–782

    Article  PubMed  Google Scholar 

  23. Qin L., Au S. K., Leung P. C., Lau M. C., Woo J., Choy W. Y., Hung W. Y., Dambacher M. A., Leung K. S. (2002) Baseline BMD and bone loss at distal radius measured by pQCT in peri- and postmenopausal Hong Kong Chinese women. Osteoporos. Int. 13(12):962–970

    Article  PubMed  CAS  Google Scholar 

  24. Rho J. Y., Ashman R. B., Turner C. H. (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26:111–119

    Article  PubMed  CAS  Google Scholar 

  25. Rho J. Y., Tsui T. Y., Pharr G. M. (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  PubMed  CAS  Google Scholar 

  26. Simpson E. K., Parkinson I. H., Manthey B., Fazzalari N. L. (2001) Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine. J. Bone Miner. Res. 16:681–687

    Article  PubMed  CAS  Google Scholar 

  27. Van Rietbergen B., Odgaard A., Kabel J., Huiskes R. (1998) Relationships between bone morphology and bone elastic properties can accurately quantified using high-resolution computer reconstructions. J. Orthop. Res. 16:23–28

    Article  PubMed  Google Scholar 

  28. Van Rietbergen B., Weinans H., Huiskes R., Odgaard A. (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28:69–81

    Article  PubMed  Google Scholar 

  29. Van Rietbergen B., Kabel J., Odgaard A., Huiskes R. (1997) Determination of trabecular bone tissue elastic properties by comparison of experimental and finite element results. In: Sol H., Oomens C. W. J. (eds) Material Identification Using Mixed Numerical Experimental Methods. Kluwer Academic, Devente, The Netherlands, pp. 183–192

    Google Scholar 

Download references

Acknowledgments

This work is supported by The Hong Kong Polytechnic University Central Research Grant A/C No. G-YX64 and National Natural Science Foundation of China under Grant No. 10502021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H., Zhang, M., Qin, L. et al. Regional Variations in the Apparent and Tissue-Level Mechanical Parameters of Vertebral Trabecular Bone with Aging Using Micro-Finite Element Analysis. Ann Biomed Eng 35, 1622–1631 (2007). https://doi.org/10.1007/s10439-007-9332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9332-8

Keywords

Navigation