Skip to main content
Log in

Dynamics of Neutrophil Membrane Compliance and Microstructure probed with a Micropipet-based Piconewton Force Transducer

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A novel biointerface probe was implemented to study the deformability of the neutrophil membrane and cortical cytoskeleton. Piconewton scale forces are applied to the cell using an ultrasensitive and tunable force transducer comprised of an avidin-coated microsphere attached to a biotinylated and swollen red blood cell. Deformations of freshly isolated human neutrophils were observed on the stage of an inverted phase contrast microscope. Force versus probe indentation curves over a cycle of contact, indentation, and retraction revealed three distinct material responses. Small probe deformations (∼500 nm) tested over a range of rates (e.g. 100–500 nm/s) revealed predominantly an elastic response. An initial low-slope region in the force-indentation curves (∼0.005 pN/nm), typically extending 0.5–1.0 μm from the cell surface was interpreted as probe contact with microvilli extensions. Further deformation yielded a slope of 0.054 ± 0.006 pN/nm, indicative of a stiffer cortical membrane. Disrupting cytoskeletal actin organization by pretreatment with cytochalasin D, reduced the slope by 40% to 0.033 ± 0.007 pN/nm and introduced hysteresis in the recovery phase. Modeling the neutrophil as a liquid drop with constant surface tension yielded values of cortical tension of 0.035 pN/nm for resting and 0.02 pN/nm for cytochalasin-treated neutrophils. These data demonstrate the utility of the biointerface probe for measuring local surface compliance and microstructure of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Binnig G., Quate C. F., Gerber C. 1986. Atomic force microscope. Phys. Rev. Lett. 56:930–933

    Article  PubMed  Google Scholar 

  2. Boulbitch A. A. 1998. Deflection of a cell membrane under application of a local force. Phys. Rev. E 57:2123–2128

    Article  CAS  Google Scholar 

  3. Bruehl R. E., Springer T. A., Bainton D. F. 1996. Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J. Histochem. Cytochem. 44:835–844

    PubMed  CAS  Google Scholar 

  4. Evans E. 2001. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30:105–128

    Article  PubMed  CAS  Google Scholar 

  5. Evans E., Berk D., Leung A. 1991. Detachment of agglutinin-bonded red cells. I. Forces to rupture molecular-point attachments. Biophys. J. 59:838–848

    PubMed  CAS  Google Scholar 

  6. Evans E., Kukan B. 1984. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood 64:1028–1035

    PubMed  CAS  Google Scholar 

  7. Evans E., Leung A., Hammer D., Simon S. I. 2001 Chemically-distinct transition states govern rapid rupture of single L-selectin bonds under force. Proc. Natl. Acad. Sci. USA 98(7):3784–3789 Mar 27

    Article  PubMed  CAS  Google Scholar 

  8. Evans E., Ritchie K., Merkel R. 1995. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587

    PubMed  CAS  Google Scholar 

  9. Evans E., Skalak R. 1980. Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton, FL

    Google Scholar 

  10. Evans E. A., Waugh R. 1977. Osmotic correction to elastic area compressibility measurements on red cell membrane. Biophys. J. 20:307–313

    PubMed  CAS  Google Scholar 

  11. Evans E., Yeung A. 1989. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160

    Article  PubMed  CAS  Google Scholar 

  12. Finger E. B., Bruehl R. E., Bainton D. F., Springer T. A. 1996. A differential role for cell shape in neutrophil tethering and rolling on endothelial selectins under flow. J. Immunol. 157:5085–5096

    PubMed  CAS  Google Scholar 

  13. Goldmann W. H., Ezzell R. M. 1996. Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp. Cell Res. 226:234–237

    Article  PubMed  CAS  Google Scholar 

  14. Heinrich V., Rawicz W. 2005 Automated, high-resolution micropipet aspiration reveals new insight into the physical properties of fluid membranes. Langmuir 21:1962–1971

    Article  PubMed  CAS  Google Scholar 

  15. Huang H., Sylvan J., Jonas M., Barresi R., So P. T. C., Campbell K. P., Lee R. T. 2005. Cell stiffness and receptors: evidence for cytoskeletal subnetworks. Am. J. Physiol. Cell Physiol. 288:72–80

    Google Scholar 

  16. Lomakina E. B., Spillmann C. M., King M. R., Waugh R. E. 2004. Rheological analysis and measurement of neutrophil indentation. Biophys. J. 87:4246–4258

    Article  PubMed  CAS  Google Scholar 

  17. Needham D., Hochmuth R. M. 1992. A sensitive measure of surface stress in the resting neutrophil. Biophys. J. 61:1664–1670

    PubMed  CAS  Google Scholar 

  18. Ritchie, K. P. Probing nanoscale adhesion and structure at soft interfaces. Ph.D. thesis, University of British Columbia, 1998

  19. Schmidtke D. W., Diamond S. L. 2000 Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J. Cell Biol. 149:719–729

    Article  PubMed  CAS  Google Scholar 

  20. Shao J.-Y., Ting-Beall H. P., Hochmuth R. M. 1998. Static and dynamic lengths of neutrophil microvilli. Proc. Natl. Acad. Sci. USA 95:6797–6802

    Article  PubMed  CAS  Google Scholar 

  21. Shao J-Y., Xu J. 2002. A modified micropipette aspiration technique and its application to tether formation from human neutrophils. ASME 124:388–396

    Article  Google Scholar 

  22. Simon S. I., Rochon Y. P., Smith C. W., Anderson D. C., Sklar L. A. 1993 β2-Integrin and L-selectin are obligatory receptors in neutrophil aggregation. Blood 82:1097–1106

    PubMed  CAS  Google Scholar 

  23. Springer T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  PubMed  CAS  Google Scholar 

  24. Tanenbaum S. W. 1978. Cytochalasins: Biochemical and Cell Biological Aspects. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  25. Ting-Beall H. P., Lee A. S., Hochmuth R. M. 1995. Effect of cytochalasin D on the mechanical properties and morphology of passive human neutrophils. Ann. Biomed. Eng. 23:666–671

    PubMed  CAS  Google Scholar 

  26. Ting-Beall H. P., Needham D., Hochmuth R. M. 1993. Volume and osmotic properties of human neutrophils. Blood 81:2774–2780

    PubMed  CAS  Google Scholar 

  27. Tsai M. A., Frank R. S., Waugh R. E. 1993. Passive mechanical behavior of human neutrophils: power-law fluid. Biophys. J. 65:2078–2088

    PubMed  CAS  Google Scholar 

  28. Tsai M. A., Frank R. S., Waugh R. E. 1994. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophys. J. 66:2166–2172

    PubMed  CAS  Google Scholar 

  29. Vinckier A., Semenza G. 1998. Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430:12–16

    Article  PubMed  CAS  Google Scholar 

  30. Wollweber L., Stracke R., Gothe U. 1981. The use of a simple method to avoid cell shrinkage during SEM preparation. J. Microsc. (Oxford) 121:185–189

    CAS  Google Scholar 

  31. Zahalak G. I., McConnaughey W. B., Elson E. L. 1990. Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J. Biomech. Eng. 112:283–294

    PubMed  CAS  Google Scholar 

  32. Zhang X., Bogorin D. F., Moy V. T. 2004. Molecular basis of the dynamic strength of the sialyl lewis X-selectin interaction. Chem. Phys. Chem. 5: 175–182

    PubMed  CAS  Google Scholar 

  33. Zhelev D. V., Needham D., Hochmuth R. M. 1994. Role of the membrane cortex in neutrophil deformation in small pipets. Biophys. J. 67:696–705

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Insightful discussions with Andrew Leung and Robert Hochmuth are gratefully acknowledged. This work was supported by National Institutes of Health grants HL54700 and MO1-RR-30. Scott Simon is funded by AI47294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott I. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, S.I., Nyunt, T., Florine-Casteel, K. et al. Dynamics of Neutrophil Membrane Compliance and Microstructure probed with a Micropipet-based Piconewton Force Transducer. Ann Biomed Eng 35, 595–604 (2007). https://doi.org/10.1007/s10439-007-9260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9260-7

Keywords

Navigation