Annals of Biomedical Engineering

, Volume 35, Issue 4, pp 672–681 | Cite as

Measurement of in vivo Stress Resultants in Neurulation-stage Amphibian Embryos

Article

Abstract

In order to obtain the first quantitative measurements of the in vivo stresses in early-stage amphibian embryos, we developed a novel instrument that uses a pair of parallel wires that are glued to the surface of an embryo normal to the direction in which the stress is to be determined. When a slit is made parallel to the wires and between them, tension in the surrounding tissue causes the slit to open. Under computer control, one of the wires is moved so as to restore the original wire spacing, and the steady-state closure force is determined from the degree of wire flexure. A cell-level finite element model is used to convert the wire bending force to an in-plane stress since the wire force is not proportional to the slit length. The device was used to measure stress resultants (force carried per unit of slit length) on the dorsal, ventral and lateral aspects of neurulation-stage axolotl (Ambystoma mexicanum) embryos. The resultants were anisotropic and varied with location and developmental stage, with values ranging from −0.17 mN/m to 1.92 mN/m. In general, the resultants could be decomposed into patterns associated with internal pressure in the embryo, bending of the embryo along its mid-sagittal plane and neural tube closure. The patterns of stress revealed by the experiments support a number of current theories about the mechanics of neurulation.

Keywords

Embryo mechanics Morphogenetic movements Neurulation Instrumentation Finite element modeling 

References

  1. 1.
    Adams D. S., R. Keller, M. A. Koehl (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus Laevis. Dev. Biol. 110:115–130Google Scholar
  2. 2.
    Asashima M., G. M. Malacinski, S. C. Smith (1989) Surgical manipulation of embryos. In: J. B. Armstrong, G. M. Malacinski (eds) Developmental Biology of the Axolotl. New York: Oxford University Press. 263–265Google Scholar
  3. 3.
    Beer F. P., E. R. Johnston, J. T. DeWolf (2005) Mechanics of Materials. New York: McGraw-Hill ScienceGoogle Scholar
  4. 4.
    Belousov L. V., J. G. Dorfman, V. G. Cherdantzev (1975) Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol. 34(3):559–574Google Scholar
  5. 5.
    Belousov L. V., N. N. Luchinskaia (1995) Mechanically dependent heterotopias of the axial rudiments in clawed toad embryos. Ontogenez 26(3):213–222PubMedGoogle Scholar
  6. 6.
    Belousov L. V., N. N. Luchinskaia, A. G. Zaraiskii (1999) Tensotaxis-collective movement of embryonic cells up along the gradients of mechanical tensions. Russ. J. Dev. Biol. 30:220–228Google Scholar
  7. 7.
    Belousov L. V., S. V. Saveliev, I. I. Naumidi, V. V. Novoselov (1994) Mechanical stresses in embryonic tissues: Patterns, morphogenetic role, and involvement in regulatory feedback. Int. Rev. Cytol. 150:1–34Google Scholar
  8. 8.
    Bordzilovskaya N. P., T. A. Dettlaff, S. T. Duhon, G. M. Malacinski (1989) Developmental-stage series of exolotl embryos. In: J. B. Armstrong, G. M. Malacinski (eds.) Developmental Biology of the Axolotl. New York: Oxford University Press. 201–219Google Scholar
  9. 9.
    Brodland G. W. (2006). Do lamellipodia have the mechanical capacity to drive convergent extension? Int. J. Dev. Biol. 50:151–155PubMedCrossRefGoogle Scholar
  10. 10.
    Brodland G. W., D. I.-L. Chen, J. H. Veldhuis (2006) A cell-based constitutive model for embryonic epithelia and other planar aggregates of biological cells. Int. J. Plasticity 22:965–995CrossRefGoogle Scholar
  11. 11.
    Brodland G. W., J. H. Veldhuis (2003) A computer model for reshaping of cells in epithelia due to in-plane deformation and annealing. Comput. Methods Biomech. Biomed. Eng. 6(2):89–98CrossRefGoogle Scholar
  12. 12.
    Burnside M. B., A. G. Jacobson (1968) Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa. Dev. Biol. 18:537–552PubMedCrossRefGoogle Scholar
  13. 13.
    Clausi D. A., G. W. Brodland (1993) Mechanical evolution of theories of neurulation using computer simulations. Dev. Biol. 118:1013–1023Google Scholar
  14. 14.
    Chen H. H., G. W. Brodland (2000) Cell-level finite element studies of viscous cells in planar aggregates. ASME J. Biomech. Eng. 122:394–401CrossRefGoogle Scholar
  15. 15.
    Chen X., G. W. Brodland (2006) The mechanics of early embryo development: Insights from finite element modeling. Solid Mech. Appl. 140: 459–469Google Scholar
  16. 16.
    Davidson L. A., A. M. Ezin, R. Keller (2002) Embryonic wound healing by apical contraception and ingression in Xenopus laevis. Cell Motil. Cytoskel. 53:163–176CrossRefGoogle Scholar
  17. 17.
    Davidson L. A., G. F. Oster, R. E. Keller, M. A. R. Koehl (1999) Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary investigation are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev. Biol. 209:221–238PubMedCrossRefGoogle Scholar
  18. 18.
    Davis G. S. (1984) Migration-directing liquid properties of embryonic amphibian tissues. Am. Zool. 24:649–655Google Scholar
  19. 19.
    Elul T., R. Keller (2000) Monopolar protrusive activity: A new morphogenetic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev. Biol. 224:3–19PubMedCrossRefGoogle Scholar
  20. 20.
    Ermakov A. S., L. V. Belousov (1998) Morphogenetic and differentiation sequelae to relaxation of mechanical tensions in Xenopus laevis blastula. Ontogenez 29(6):450–458PubMedGoogle Scholar
  21. 21.
    Farge E. (2003) Mechanical induction of twist in the Drosophila Foregut/Stomodeal primodium. Curr. Biol. 13(16):1365–1377PubMedCrossRefGoogle Scholar
  22. 22.
    Flugge W. (1973) Stresses in Shells. 2nd ed. Berlin Heidelberg New York: Springer-VerlagGoogle Scholar
  23. 23.
    Gilbert, S. F. Developmental Biology. Sinauer Associates Inc., 2003Google Scholar
  24. 24.
    Hackett D. A., J. L. Smith, G. C. Schoenwolf (1997) Epidermal ectoderm is required for full elevation and for convergence during bending of the avian neural plate. Dev. Dynam. 210:397–406CrossRefGoogle Scholar
  25. 25.
    Hibbeler R. C. (1993) Statics and Mechanics of Materials. New Jersey: Prentice HallGoogle Scholar
  26. 26.
    Iles, P. J. W., G. W. Brodland, D. A. Clausi, and S. M. Puddister. Estimation of cellular fabric in embryonic epithelia. Comput. Methods Biomech. Biomed. Eng., 2007, in pressGoogle Scholar
  27. 27.
    Jacobson A. G., R. Gordon (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool. 197:191–246PubMedCrossRefGoogle Scholar
  28. 28.
    Jacobson C. O., A. Jacobson (1973) Studies on morphogenic movements during neural tube closure in amphibia. Zoon 1:17–21Google Scholar
  29. 29.
    Kamm R. D. (2002) Cellular fluidmechanics. Annu. Rev. Fluid Mech. 34:211–232PubMedCrossRefGoogle Scholar
  30. 30.
    Karfunkel P. (1974) The mechanisms of neural tube formation. Int. Rev. Cytol. 38:245–271PubMedCrossRefGoogle Scholar
  31. 31.
    Keller R. (2004) Heading away from the rump. Nature 430:305–306PubMedCrossRefGoogle Scholar
  32. 32.
    Keller R., et al. (2000) Mechanisms of convergence and extension by cell intercalation. Phil. Trans. Roy. Soc. Lond. B 355: 897–922CrossRefGoogle Scholar
  33. 33.
    Lewis W. H. (1947) Mechanics if invagination. Anat. Rec. 97:139–156CrossRefGoogle Scholar
  34. 34.
    Ninomiya H., R. P. Elinson, R. Winklbauer (2004) Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430:364–367PubMedCrossRefGoogle Scholar
  35. 35.
    Taber L. A. (2006) Biophysical mechanisms of cardiac looping. Int. J. Dev. Biol. 50(2–3):323–332PubMedCrossRefGoogle Scholar
  36. 36.
    Taber L. A., I. E. Lin, E. B. Clark (1995). Mechanics of cardiac looping. Dev. Dynam. 203: 42–50Google Scholar
  37. 37.
    Veldhuis J., G. W. Brodland, C. Wiebe, G. Bootsma (2005) Multiview robotic microscope reveals the in-plane kinematics of amphibian neurulation. Ann. Biomed. Eng. 33:821–828PubMedCrossRefGoogle Scholar
  38. 38.
    Wallingford J. B., S. E. Fraser, R. M. Harland (2002) Convergent extension: The molecular control of polarized cell movement during embryonic development. Dev. Cell 2:695–706PubMedCrossRefGoogle Scholar
  39. 39.
    Wang J. H.-C., B. P. Thampatty (2006) An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5:1–16PubMedCrossRefGoogle Scholar
  40. 40.
    Wiebe C., G. W. Brodland (2005) Tensile properties of embryonic epithelia measured using a novel instrument. J. Biomech. 38:2087–2094PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2007

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations