Skip to main content
Log in

Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow Recirculation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The extracellular presence of the adenine nucleotides ATP and ADP induces calcium mobilization in vascular endothelial cells (ECs). ATP/ADP concentration at the EC surface is determined by a balance of convective-diffusive transport to and from the EC surface, hydrolysis by ectonucleotidases at the cell surface, and flow-induced ATP release from ECs. Our previous numerical simulations in a parallel plate geometry had demonstrated that flow-induced ATP release has a profound effect on nucleotide concentration at the EC surface. In the present study, we have extended the modeling to probe the impact of flow separation and recirculation downstream of a backward facing step (BFS) on ATP/ADP concentration at the EC surface. The results show that for both steady and pulsatile flow over a wide range of wall shear stresses, the ATP + ADP concentration at the EC surface is considerably lower within the flow recirculation region than in areas of undisturbed flow outside the recirculation zone. Pulsatile flow also leads to sharp temporal gradients in nucleotide concentration. If confirmed experimentally, the present findings suggest that disturbed and undisturbed flow may affect EC calcium mobilization differently. Such differences might, in turn, contribute to the observed endothelial dysfunction in regions of disturbed flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Ando J., A. Ohtsuka, R. Korenaga, A. Kamiya. Effect of extracellular ATP level on flow-induced Ca++ response in cultured vascular endothelial cells Biochem. Biophys. Res. Commun. 179:1192–1199, 1991

    Article  PubMed  CAS  Google Scholar 

  2. Armaly B. F., F. Durst, J. C. F. Pereira, B. Schonung. Experimental and theoretical investigation of backward-facing step flow J. Fluid Mech. 127:473–496, 1983

    Article  Google Scholar 

  3. Barakat A. I., T. Karino, C. K. Colton. Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches Biorheology 34:195–221, 1997

    Article  PubMed  CAS  Google Scholar 

  4. Barakat A. I., D. K. Lieu. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress Cell Biochem. Biophys. 38:323–343, 2003

    Article  PubMed  CAS  Google Scholar 

  5. Bodin P., G. Burnstock. ATP-stimulated release of ATP by human endothelial cells J. Cardiovasc Pharmacol. 27:872–875, 1996

    Article  PubMed  CAS  Google Scholar 

  6. Bodin P., G. Burnstock. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular J. Cardiovasc. Pharmacol. 38:900–908, 2001

    Article  PubMed  CAS  Google Scholar 

  7. Burnstock G., C. Kennedy. A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent Circ. Res. 58: 319–330,1986

    PubMed  CAS  Google Scholar 

  8. Choi H. W., A. I. Barakat. Numerical study of the impact of non-newtonian blood behavior on flow over a two-dimensional backward facing step Biorheology 42:493–509, 2005

    PubMed  Google Scholar 

  9. Cusack N. J., J. D. Pearson, J. L. Gordon. Stereoselectivity of ectonucleotidases on vascular endothelial cells Biochem. J. 214:975–981, 1983

    PubMed  CAS  Google Scholar 

  10. David T. Wall shear stress modulation of ATP/ADP concentration at the endothelium Ann. Biomed. Eng. 31:1231–1237, 2003

    Article  PubMed  Google Scholar 

  11. Davies P. F. Flow-mediated endothelial mechanotransduction Physiol Rev. 75:519–560, 1995

    PubMed  CAS  Google Scholar 

  12. DePaola N., P. F. Davies, W. F. Pritchard Jr., L. Florez, N. Harbeck, D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro Proc. Natl. Acad. Sci. U S A 96:3154–3159, 1999

    Article  PubMed  CAS  Google Scholar 

  13. DePaola N., M. A. Gimbrone Jr., P. F. Davies, C. F. Dewey Jr. Vascular endothelium responds to fluid shear stress gradients Arterioscler Thromb. 12:1254–1257, 1992

    PubMed  CAS  Google Scholar 

  14. Dull R. O., P. F. Davies. Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells Am. J. Physiol. 261:H149–154, 1991

    PubMed  CAS  Google Scholar 

  15. Geiger R. V., B. C. Berk, R. W. Alexander, R. M. Nerem. Flow-induced calcium transients in single endothelial cells: Spatial and temporal analysis Am. J. Physiol. 262:C1411–C1417, 1992

    PubMed  CAS  Google Scholar 

  16. Haidekker M. A., C. R. White, J. A. Frangos. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step J. Biomech. Eng. 123:455–463, 2001

    Article  PubMed  CAS  Google Scholar 

  17. Helmlinger G., B. C. Berk, R. M. Nerem. Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ Am. J. Physiol. 269:C367–C375, 1995

    PubMed  CAS  Google Scholar 

  18. Hsu P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation Biochem. Biophys. Res. Commun 285: 751–759, 2001

    Article  PubMed  CAS  Google Scholar 

  19. John K., A. I. Barakat. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: Effect of flow-induced ATP release Ann. Biomed. Eng. 29:740–751, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Ku D. N., D. P. Giddens, C. K. Zarins, S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low oscillating shear stress Arteriosclerosis 5:293–302, 1985

    PubMed  CAS  Google Scholar 

  21. Lei M., C. Kleinstreuer, G. A. Truskey. Numerical investigation and prediction of atherogenic sites in branching arteries J. Biomech. Eng. 117:350–357, 1995

    PubMed  CAS  Google Scholar 

  22. Milner P., K. A. Kirkpatrick, V. Ralevic, V. Toothill, J. Pearson, G. Burnstock. Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow Proc. Biol. Sci. 241:245–248, 1990

    Article  PubMed  CAS  Google Scholar 

  23. Mo M., S. G. Eskin, W. P. Schilling. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: Effect of shear stress and ATP Am. J. Physiol. 260:H1698–H1707, 1991

    PubMed  CAS  Google Scholar 

  24. Moore J. E. Jr., C. Xu, S. Glagov, C. K. Zarins, D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis Atherosclerosis 110:225–240, 1994

    Article  PubMed  CAS  Google Scholar 

  25. Nerem R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis J. Biomech. Eng. 114:274–282, 1992

    PubMed  CAS  Google Scholar 

  26. Nollert M. U., S. L. Diamond, L. V. Mcintire. Hydrodynamic shear-stress and mass-transport modulation of endothelial-cell metabolism Biotechnol. Bioeng. 38:588–602, 1991

    Article  CAS  PubMed  Google Scholar 

  27. Nollert M. U., L. V. McIntire. Convective mass transfer effects on the intracellular calcium response of endothelial cells J. Biomech. Eng. 114:321–326, 1992

    PubMed  CAS  Google Scholar 

  28. Olsson R. A., J. D. Pearson. Cardiovascular purinoceptors Physiol. Rev. 70:761–845, 1990

    PubMed  CAS  Google Scholar 

  29. Pearson J. D., J. L. Gordon. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides Nature 281:384–386, 1979

    Article  PubMed  CAS  Google Scholar 

  30. Pirotton S., E. Raspe, D. Demolle, C. Erneux, J. M. Boeynaems. Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells J. Biol. Chem. 262:17461–17466, 1987

    PubMed  CAS  Google Scholar 

  31. Plank M. J., A. Comerford, T. David, D. J. N. Wall. Concentration of blood-borne agonists at the endothelium Proc. Royal. Soc. A 462:671–688, 2006

    Article  CAS  Google Scholar 

  32. Plank M. J., D. J. N. Wall, T. David. Atherosclerosis and calcium signaling in endothelial cells Prog. Biophy. Mol. Bio. 91:287–313, 2006

    Article  CAS  Google Scholar 

  33. Pohl U., J. Holtz, R. Busse, E. Bassenge. Crucial role of endothelium in the vasodilator response to increased flow in vivo Hypertension 8:37–44, 1986

    PubMed  CAS  Google Scholar 

  34. Shen J., M. A. Gimbrone Jr., F. W. Luscinskas, C. F. Dewey Jr. Regulation of adenine nucleotide concentration at endothelium-fluid interface by viscous shear flow Biophys. J. 64:1323–1330, 1993

    Article  PubMed  CAS  Google Scholar 

  35. Shen J., F. W. Luscinskas, A. Connolly, C. F. Dewey Jr., M. A. Gimbrone Jr. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells Am. J. Physiol. 262:C384–C390, 1992

    PubMed  CAS  Google Scholar 

  36. Truskey G. A., K. M. Barber, T. C. Robey, L. A. Olivier, M. P. Combs. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation J. Biomech. Eng. 117:203–210, 1995

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Institutes of Health (NIH CA 103828) and Philip Morris, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul I. Barakat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.W., Ferrara, K.W. & Barakat, A.I. Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow Recirculation. Ann Biomed Eng 35, 505–516 (2007). https://doi.org/10.1007/s10439-006-9247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9247-9

Keywords

Navigation