Abstract
In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system.
Similar content being viewed by others
References
Bovendeerd P. H. M., Arts T., Delhaas T., Huyghe J. M., Vancampen D. H., Reneman R. S. (1996) Regional wall mechanics in the ischemic left ventricle: Numerical modeling and dog experiments. Am. J. Physiol. Heart Circ. Physiol. 39:H398–H410
Bovendeerd P. H. M., Arts T., Huyghe J. M., van Campen D. H., Reneman R. S. (1992) Dependence of local left-ventricular wall mechanics on myocardial fiber orientation – a model study. J. Biomech. 25:1129–1140
Brickner M. E., Hillis L. D. (2000) Congenital heart disease in adults – first of two parts. N. Engl. J. Med. 342:256–263
Burkhoff D., de Tombe P. P., Hunter W. C. (1993) Impact of ejection on magnitude and time course of ventricular pressure-generating capacity. Am. J. Physiol. Heart Circ. Physiol. 265:H899–H909
Carmeliet E. (1999) Cardiac ionic currents and acute ischemia: From channels to arrhythmias. Physiol. Rev. 79:917–1017
Chung D. C., Niranjan S. C., Clark J. W., Bidani A., Johnston W. E., Zwischenberger J. B., Traber D. L. (1997) A dynamic model of ventricular interaction and pericardial influence. Am. J. Physiol. Heart Circ. Physiol. 272:H2942–H2962
Drzewiecki G., Field S., Moubarak I., Li J. K. J. (1979) Vessel growth and collapsible pressure-area relationship. Am. J. Physiol. Heart Circ. Physiol. 273:H2030–H2043
Dubini G., deLeval M. R., Pietrabissa R., Montevecchi F. M., Fumero R. (1996) A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J. Biomech. 29:111–121
FASEB. Respiration and Circulation. Federation of American Societies for Experimental Biology, Bethesda, MD, 930 pp., 1971
Feneley M. P., Olsen C. O., Glower D. D., Rankin J. S. (1989) Effect of acutely increased right ventricular afterload on work output from the left-ventricle in conscious dogs – systolic ventricular interaction. Circ.Res. 65:135–145
Formaggia L., Gerbeau J. F., Nobile F., Quarteroni A. (2001) On the coupling of 3d and 1d navier-stokes equations for flow problems in compliant vessels. Comput. Meth. Appl. Mech. Eng. 191:561–582
Gibbons-Kroeker C. A., Adeeb S., Shrive N. G., Tyberg J. V. (2006) Compression induced by rv pressure overload decreases regional coronary blood flow in anesthetized dogs. Am. J. Physiol. Heart Circ. Physiol. 290:H2432–H2438
Gibbons-Kroeker C. A., Shrive N. G., Belenkie I., Tyberg J. V. (2003) Pericardium modulates left and right ventricular stroke volumes to compensate for sudden changes in atrial volume. Am. J. Physiol. Heart Circ. Physiol. 284:H2247–H2254
Guccione J. M., McCulloch A. D., Waldman L. K. (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. Trans. ASME 113:42–55
Hairer E., Wanner G. (1999) Stiff differential equations solved by radau methods. J. Comput. Appl. Math. 111:93–111
ICRP. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. Elsevier Science, New York, 320 pp., 2003
Jerzewski A., Steendijk P., Pattynama P. M. T., Leeuwenburgh B. P. J., de Roos A., Baan J. (1999) Right ventricular systolic function and ventricular interaction during acute embolisation of the left anterior descending coronary artery in sheep. Cardiovasc. Res. 43:86–95
Kerckhoffs R. C. P., Bovendeerd P. H. M., Kotte J. C. S., Prinzen F. W., Smits K., Arts T. (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: A model study. Ann. Biomed. Eng. 31:536–547
Kerckhoffs R. C. P., Bovendeerd P. H. M., Prinzen F. W., Smits K., Arts T. (2003) Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart. J. Eng. Math. 47:201–216
Kerckhoffs R. C. P., Faris O., Bovendeerd P. H. M., Prinzen F. W., Smits K., McVeigh E. R., Arts T. (2005) Electromechanics of paced left ventricle simulated by straightforward mathematical model: Comparison with experiments. Am. J. Physiol. Heart Circ. Physiol. 289:H1889–H1897
Kerckhoffs R. C. P., Healy S. N., Usyk T. P., McCulloch A. D. (2006) Computational modeling of cardiac electromechanics. Proc. IEEE 94:769–783
Kingma I., Tyberg J. V., Smith E. R. (1983) Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation 68:1304–1314
Klotz, S., I. Hay, M. L. Dickstein, G.-H. Yi, J. Wang, M. Maurer, D. A. Kass, and D. Burkhoff. Single beat estimation of the end-diastolic pressure-volume relationship: A novel method with the potential for non-invasive application. Am. J. Physiol. Heart Circ. Physiol. 10.1152/ajpheart.01240.2005, 2006
Kreyszig E (1999) Advanced Engineering Mathematics. John Wiley & Sons, New York
Lau V.-K., Sagawa K., Suga H. (1979) Instantaneous pressure–volume relationship of right atrium during isovolumic contraction in canine heart. Am. J. Physiol. Heart Circ. Physiol. 236:H672–H679
Li X. S., Demmel J. W. (2003) Superlu_dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM T. Math. Software 29:110–140
Lu K., Clark J. W., Ghorbel F. H., Ware D. L., Bidani A. (2001) A human cardiopulmonary system model applied to the analysis of the valsalva maneuver. Am. J. Physiol. Heart Circ. Physiol. 281:H2661–H2679
Mazhari R., Omens J. H., Covell J. W., McCulloch A. D. (2000) Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc. Res. 47:284–293
Morris-Thurgood J. A., Frenneaux M. P. (2000) Diastolic ventricular interaction and ventricular diastolic filling. Heart Fail. Rev. 5:307–323
Neal, M. and J. B. Bassingthwaighte. Subject-specific models for the estimation of cardiac output and blood volume during hemorrhage. Submitted, 2006
Nelson G. S., Sayed-Ahmed E. Y., Kroeker C. A. G., Sun Y. H., Ter Keurs H., Shrive N. G., Tyberg J. V. (2001) Compression of interventricular septum during right ventricular pressure loading. Am. J. Physiol. Heart Circ. Physiol. 280:H2639–H2648
Nielsen P. M. F., Legrice I. J., Smaill B. H., Hunter P. J. (1991) Mathematical-model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:H1365–H1378
Rideout, V. C. Mathematical Computer Modeling of Physiological Systems. Prentice Hall, Englewood Cliffs, NJ, 261 pp., 1991
Rodriguez B., Tice B. M., Eason J. C., Aguel F., Trayanova N. (2004) Cardiac vulnerability to electric shocks during phase 1a of acute global ischemia. Heart Rhythm 1:695–703
Salem J. E., Saidel G. M., Stanley W. C., Cabrera M. E. (2002) Mechanistic model of myocardial energy metabolism under normal and ischemic conditions. Ann. Biomed. Eng. 30:202–216
Santamore W. P., Dell’Italia L. J. (1998) Ventricular interdependence: Significant left ventricular contributions to right ventricular systolic function. Prog. Cardiovasc. Dis. 40:289–308
Saucerman J. J., McCulloch A. D. (2004) Mechanistic systems models of cell signaling networks: A case study of myocyte adrenergic regulation. Prog. Biophys. Mol. Biol. 85:261–278
Shaw R. M., Rudy Y. (1997) Electrophysiologic effects of acute myocardial ischemia: A theoretical study of altered cell excitability and action potential duration. Cardiovasc. Res. 35:256–272
Sun Y., Beshara M., Lucariello R. J., Chiaramida S. A. (1997) A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. Am. J. Physiol. Heart Circ. Physiol. 41:H1499–H1515
Usyk T. P., LeGrice I. J., McCulloch A. D. (2002) Computational model of three dimensional cardiac electromechanics. Comp. Visual. Sci. 4:249–257
Usyk T. P., Mazhari R., McCulloch A. D. (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61:143–164
Usyk T. P., McCulloch A. D. (2003) Computational methods for soft tissue biomechanics. In: Holzapfel G. A., Ogden R. W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. Springer, Wien, New York, pp. 273–342
Verbeek X. A. A. M., Vernooy K., Peschar M., Van der Nagel T., Hunnik A., Prinzen F. W. (2002) Quantification of interventricular asynchrony during lbbb and ventricular pacing. Am. J. Physiol. Heart Circ. Physiol. 283:H1370–H1378
Vignon-Clementel I. E., Figueroa C. A., Jansen K. E., Taylor C. A. (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Meth. Appl. Mech. Eng. 195:3776–3796
Villarreal F. J., Lew W. Y. W., Waldman L. K., Covell J. W. (1991) Transmural myocardial deformation in the ischemic canine left-ventricle. Circ. Res. 68:368–381
Walker J. C., Ratcliffe M. B., Zhang P., Wallace A. W., Fata B., Hsu E. W., Saloner D., Guccione J. M. (2005) Mri-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Heart Circ. Physiol. 289:H692–H700
Watanabe H., Sugiura S., Kafuku H., Hisada T. (2004) Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87:2074–2085
Weber K. T., Janicki J. S., Shroff S., Fishman A. P. (1981) Contractile mechanics and interaction of the right and left-ventricles. Am. J. Cardiol. 47:686–695
Acknowledgments
This work was supported by the National Biomedical Computation Resource (NIH Grant P41 RR08605) (to A.D.M), National Science Foundation Grants BES-0096492 and BES-0506252 (to A.D.M) and BES-0506477 (to M.L.N.), NIH Grant HL32583 (to J.H.O.), and NIH Grant EB001973 (to J.B.B.). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR-017588-01 from the National Center for Research Resources, National Institutes of Health. A.D.M. and J.H.O. are co-founders of Insilicomed Inc., a licensee of UCSD-owned software used in this research. Furthermore, we are grateful to our programmers Sherief Abdel-Rahman, Ryan Brown, and Fred Lionetti for their excellent work on improving and extending Continuity.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix A: time-varying elastance model for ventricles that includes direct ventricular interaction
In the heart, the relation between ventricular volumes and pressures is written as:
In which \(\Delta\vec{V}\) is a vector with LV and RV instantaneous ventricular volumes minus the rest volumes:
where y v is a ventricular activation function:
with
where V x,rest,d and V x,rest,s are diastolic and systolic unloaded volumes.
Matrix \(\underline{C}\) is the ventricular time-varying compliance matrix:
\(\underline{C}_{\rm max}\) and \(\underline{C}_{\rm min}\) are compliances for the fully active and passive state, respectively.
From the pressure and volume curves in Fig. 2 it can be seen that ventricular co-compliances are pressure-dependent: i.e. the RV volume change for a LV pressure change is different at a constant low and high RV pressure. Hence C LR and C RL in Eq. A1 are written as a function of pressure (see also Table A1).
The same procedure is performed for maximally activated ventricles (Fig. 2b).
Using the time-varying elastance model in the more common way (with input volume and output pressure), Eq. A1 is rewritten as:
Using this equation, the co-compliances need to be written as a function of volume:
Parameter values and results of the time-varying elastance model are shown in Table A1 and Fig. 2, respectively, for passive and fully activated myocardium.
Appendix B: circulatory model
Time-Varying Elastances for Atria
The atrial elastances are driven by an activation function
where
Left atrial pressure is given by
where LA elastance and rest volume (volume at zero pressure) are given by
and
Right atrial pressure, elastance, and rest volume are given by
Systemic Circulation
Pulmonary Circulation
Notice that ventricular volume changes (Eqs. B16 and B26) are purely determined by ventricular in- and outflows. In the case of coupling between the FE and circulatory model, cavity pressures come from the update algorithm. In the case of the procedure for determining the initial conditions, cavity pressures are calculated by the ventricular time-varying elastance model.
See Table B1 for a description of state variables and their initial conditions. Tables B2 and B3 contain descriptions of circulatory variables and parameters, respectively.
Rights and permissions
About this article
Cite this article
Kerckhoffs, R.C.P., Neal, M.L., Gu, Q. et al. Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation. Ann Biomed Eng 35, 1–18 (2007). https://doi.org/10.1007/s10439-006-9212-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-006-9212-7