Skip to main content
Log in

Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Bovendeerd P. H. M., Arts T., Delhaas T., Huyghe J. M., Vancampen D. H., Reneman R. S. (1996) Regional wall mechanics in the ischemic left ventricle: Numerical modeling and dog experiments. Am. J. Physiol. Heart Circ. Physiol. 39:H398–H410

    Google Scholar 

  2. Bovendeerd P. H. M., Arts T., Huyghe J. M., van Campen D. H., Reneman R. S. (1992) Dependence of local left-ventricular wall mechanics on myocardial fiber orientation – a model study. J. Biomech. 25:1129–1140

    Article  CAS  PubMed  Google Scholar 

  3. Brickner M. E., Hillis L. D. (2000) Congenital heart disease in adults – first of two parts. N. Engl. J. Med. 342:256–263

    Article  CAS  PubMed  Google Scholar 

  4. Burkhoff D., de Tombe P. P., Hunter W. C. (1993) Impact of ejection on magnitude and time course of ventricular pressure-generating capacity. Am. J. Physiol. Heart Circ. Physiol. 265:H899–H909

    CAS  Google Scholar 

  5. Carmeliet E. (1999) Cardiac ionic currents and acute ischemia: From channels to arrhythmias. Physiol. Rev. 79:917–1017

    CAS  PubMed  Google Scholar 

  6. Chung D. C., Niranjan S. C., Clark J. W., Bidani A., Johnston W. E., Zwischenberger J. B., Traber D. L. (1997) A dynamic model of ventricular interaction and pericardial influence. Am. J. Physiol. Heart Circ. Physiol. 272:H2942–H2962

    CAS  Google Scholar 

  7. Drzewiecki G., Field S., Moubarak I., Li J. K. J. (1979) Vessel growth and collapsible pressure-area relationship. Am. J. Physiol. Heart Circ. Physiol. 273:H2030–H2043

    Google Scholar 

  8. Dubini G., deLeval M. R., Pietrabissa R., Montevecchi F. M., Fumero R. (1996) A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J. Biomech. 29:111–121

    Article  CAS  PubMed  Google Scholar 

  9. FASEB. Respiration and Circulation. Federation of American Societies for Experimental Biology, Bethesda, MD, 930 pp., 1971

  10. Feneley M. P., Olsen C. O., Glower D. D., Rankin J. S. (1989) Effect of acutely increased right ventricular afterload on work output from the left-ventricle in conscious dogs – systolic ventricular interaction. Circ.Res. 65:135–145

    CAS  PubMed  Google Scholar 

  11. Formaggia L., Gerbeau J. F., Nobile F., Quarteroni A. (2001) On the coupling of 3d and 1d navier-stokes equations for flow problems in compliant vessels. Comput. Meth. Appl. Mech. Eng. 191:561–582

    Article  Google Scholar 

  12. Gibbons-Kroeker C. A., Adeeb S., Shrive N. G., Tyberg J. V. (2006) Compression induced by rv pressure overload decreases regional coronary blood flow in anesthetized dogs. Am. J. Physiol. Heart Circ. Physiol. 290:H2432–H2438

    Article  PubMed  Google Scholar 

  13. Gibbons-Kroeker C. A., Shrive N. G., Belenkie I., Tyberg J. V. (2003) Pericardium modulates left and right ventricular stroke volumes to compensate for sudden changes in atrial volume. Am. J. Physiol. Heart Circ. Physiol. 284:H2247–H2254

    CAS  Google Scholar 

  14. Guccione J. M., McCulloch A. D., Waldman L. K. (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. Trans. ASME 113:42–55

    CAS  Google Scholar 

  15. Hairer E., Wanner G. (1999) Stiff differential equations solved by radau methods. J. Comput. Appl. Math. 111:93–111

    Article  Google Scholar 

  16. ICRP. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. Elsevier Science, New York, 320 pp., 2003

  17. Jerzewski A., Steendijk P., Pattynama P. M. T., Leeuwenburgh B. P. J., de Roos A., Baan J. (1999) Right ventricular systolic function and ventricular interaction during acute embolisation of the left anterior descending coronary artery in sheep. Cardiovasc. Res. 43:86–95

    Article  CAS  PubMed  Google Scholar 

  18. Kerckhoffs R. C. P., Bovendeerd P. H. M., Kotte J. C. S., Prinzen F. W., Smits K., Arts T. (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: A model study. Ann. Biomed. Eng. 31:536–547

    Article  CAS  PubMed  Google Scholar 

  19. Kerckhoffs R. C. P., Bovendeerd P. H. M., Prinzen F. W., Smits K., Arts T. (2003) Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart. J. Eng. Math. 47:201–216

    Article  Google Scholar 

  20. Kerckhoffs R. C. P., Faris O., Bovendeerd P. H. M., Prinzen F. W., Smits K., McVeigh E. R., Arts T. (2005) Electromechanics of paced left ventricle simulated by straightforward mathematical model: Comparison with experiments. Am. J. Physiol. Heart Circ. Physiol. 289:H1889–H1897

    Article  CAS  PubMed  Google Scholar 

  21. Kerckhoffs R. C. P., Healy S. N., Usyk T. P., McCulloch A. D. (2006) Computational modeling of cardiac electromechanics. Proc. IEEE 94:769–783

    Article  Google Scholar 

  22. Kingma I., Tyberg J. V., Smith E. R. (1983) Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation 68:1304–1314

    CAS  PubMed  Google Scholar 

  23. Klotz, S., I. Hay, M. L. Dickstein, G.-H. Yi, J. Wang, M. Maurer, D. A. Kass, and D. Burkhoff. Single beat estimation of the end-diastolic pressure-volume relationship: A novel method with the potential for non-invasive application. Am. J. Physiol. Heart Circ. Physiol. 10.1152/ajpheart.01240.2005, 2006

  24. Kreyszig E (1999) Advanced Engineering Mathematics. John Wiley & Sons, New York

    Google Scholar 

  25. Lau V.-K., Sagawa K., Suga H. (1979) Instantaneous pressure–volume relationship of right atrium during isovolumic contraction in canine heart. Am. J. Physiol. Heart Circ. Physiol. 236:H672–H679

    CAS  Google Scholar 

  26. Li X. S., Demmel J. W. (2003) Superlu_dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM T. Math. Software 29:110–140

    Article  Google Scholar 

  27. Lu K., Clark J. W., Ghorbel F. H., Ware D. L., Bidani A. (2001) A human cardiopulmonary system model applied to the analysis of the valsalva maneuver. Am. J. Physiol. Heart Circ. Physiol. 281:H2661–H2679

    CAS  PubMed  Google Scholar 

  28. Mazhari R., Omens J. H., Covell J. W., McCulloch A. D. (2000) Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc. Res. 47:284–293

    Article  CAS  PubMed  Google Scholar 

  29. Morris-Thurgood J. A., Frenneaux M. P. (2000) Diastolic ventricular interaction and ventricular diastolic filling. Heart Fail. Rev. 5:307–323

    Article  CAS  PubMed  Google Scholar 

  30. Neal, M. and J. B. Bassingthwaighte. Subject-specific models for the estimation of cardiac output and blood volume during hemorrhage. Submitted, 2006

  31. Nelson G. S., Sayed-Ahmed E. Y., Kroeker C. A. G., Sun Y. H., Ter Keurs H., Shrive N. G., Tyberg J. V. (2001) Compression of interventricular septum during right ventricular pressure loading. Am. J. Physiol. Heart Circ. Physiol. 280:H2639–H2648

    CAS  PubMed  Google Scholar 

  32. Nielsen P. M. F., Legrice I. J., Smaill B. H., Hunter P. J. (1991) Mathematical-model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:H1365–H1378

    CAS  PubMed  Google Scholar 

  33. Rideout, V. C. Mathematical Computer Modeling of Physiological Systems. Prentice Hall, Englewood Cliffs, NJ, 261 pp., 1991

  34. Rodriguez B., Tice B. M., Eason J. C., Aguel F., Trayanova N. (2004) Cardiac vulnerability to electric shocks during phase 1a of acute global ischemia. Heart Rhythm 1:695–703

    Article  PubMed  Google Scholar 

  35. Salem J. E., Saidel G. M., Stanley W. C., Cabrera M. E. (2002) Mechanistic model of myocardial energy metabolism under normal and ischemic conditions. Ann. Biomed. Eng. 30:202–216

    Article  PubMed  Google Scholar 

  36. Santamore W. P., Dell’Italia L. J. (1998) Ventricular interdependence: Significant left ventricular contributions to right ventricular systolic function. Prog. Cardiovasc. Dis. 40:289–308

    Article  CAS  PubMed  Google Scholar 

  37. Saucerman J. J., McCulloch A. D. (2004) Mechanistic systems models of cell signaling networks: A case study of myocyte adrenergic regulation. Prog. Biophys. Mol. Biol. 85:261–278

    Article  CAS  PubMed  Google Scholar 

  38. Shaw R. M., Rudy Y. (1997) Electrophysiologic effects of acute myocardial ischemia: A theoretical study of altered cell excitability and action potential duration. Cardiovasc. Res. 35:256–272

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y., Beshara M., Lucariello R. J., Chiaramida S. A. (1997) A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. Am. J. Physiol. Heart Circ. Physiol. 41:H1499–H1515

    Google Scholar 

  40. Usyk T. P., LeGrice I. J., McCulloch A. D. (2002) Computational model of three dimensional cardiac electromechanics. Comp. Visual. Sci. 4:249–257

    Article  Google Scholar 

  41. Usyk T. P., Mazhari R., McCulloch A. D. (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61:143–164

    Article  Google Scholar 

  42. Usyk T. P., McCulloch A. D. (2003) Computational methods for soft tissue biomechanics. In: Holzapfel G. A., Ogden R. W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. Springer, Wien, New York, pp. 273–342

    Google Scholar 

  43. Verbeek X. A. A. M., Vernooy K., Peschar M., Van der Nagel T., Hunnik A., Prinzen F. W. (2002) Quantification of interventricular asynchrony during lbbb and ventricular pacing. Am. J. Physiol. Heart Circ. Physiol. 283:H1370–H1378

    CAS  PubMed  Google Scholar 

  44. Vignon-Clementel I. E., Figueroa C. A., Jansen K. E., Taylor C. A. (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Meth. Appl. Mech. Eng. 195:3776–3796

    Article  Google Scholar 

  45. Villarreal F. J., Lew W. Y. W., Waldman L. K., Covell J. W. (1991) Transmural myocardial deformation in the ischemic canine left-ventricle. Circ. Res. 68:368–381

    CAS  PubMed  Google Scholar 

  46. Walker J. C., Ratcliffe M. B., Zhang P., Wallace A. W., Fata B., Hsu E. W., Saloner D., Guccione J. M. (2005) Mri-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Heart Circ. Physiol. 289:H692–H700

    Article  CAS  PubMed  Google Scholar 

  47. Watanabe H., Sugiura S., Kafuku H., Hisada T. (2004) Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87:2074–2085

    Article  CAS  PubMed  Google Scholar 

  48. Weber K. T., Janicki J. S., Shroff S., Fishman A. P. (1981) Contractile mechanics and interaction of the right and left-ventricles. Am. J. Cardiol. 47:686–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Biomedical Computation Resource (NIH Grant P41 RR08605) (to A.D.M), National Science Foundation Grants BES-0096492 and BES-0506252 (to A.D.M) and BES-0506477 (to M.L.N.), NIH Grant HL32583 (to J.H.O.), and NIH Grant EB001973 (to J.B.B.). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR-017588-01 from the National Center for Research Resources, National Institutes of Health. A.D.M. and J.H.O. are co-founders of Insilicomed Inc., a licensee of UCSD-owned software used in this research. Furthermore, we are grateful to our programmers Sherief Abdel-Rahman, Ryan Brown, and Fred Lionetti for their excellent work on improving and extending Continuity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. McCulloch Ph.D.

Appendices

Appendix A: time-varying elastance model for ventricles that includes direct ventricular interaction

In the heart, the relation between ventricular volumes and pressures is written as:

$$ \Delta \vec {V}=\underline{C} \cdot \vec {p}=\left[ {{\begin{array}{l} {\Delta V_{\rm L} }\\ {\Delta V_{\rm R}}\\ \end{array}}} \right]=\left[ {{\begin{array}{ll} {C_{\rm LL} }& {C_{\rm LR} (p_{\rm L} )}\\ {C_{\rm RL} (p_{\rm R} )}& {C_{\rm RR} }\\ \end{array} }} \right]\left[ {{\begin{array}{l} {p_{\rm L} }\\ {p_{\rm R} }\\ \end{array} }} \right]=\left[ {{\begin{array}{ll} {\frac{dV_{\rm L}}{dp_{\rm L}}}&{\frac{dV_{\rm L}}{dp_{\rm R}}}\\ {\frac{dV_{\rm R} }{dp_{\rm L} }}& {\frac{dV_{\rm R} }{dp_{\rm R} }}\\ \end{array}}}\right]\left[{{\begin{array}{l} {p_{\rm L} }\\ {p_{\rm R} }\\ \end{array} }}\right] $$
(A1)

In which \(\Delta\vec{V}\) is a vector with LV and RV instantaneous ventricular volumes minus the rest volumes:

$$ {\vec{V}}_{\rm rest}=(1-y_{\rm v}) \left[{{\begin{array}{ll} V_{\rm L,rest,d}&-V_{\rm L,rest,s}\\ V_{\rm R,rest,d}&-V_{\rm R,rest,s}\\ \end{array}}}\right]+ \left[{{\begin{array}{l} V_{\rm L,rest,s}\\ V_{\rm R,rest,s}\\ \end{array}}}\right] $$
(A2)

where y v is a ventricular activation function:

$$ y_{\rm v}=\left\{{{\begin{array}{ll} -\frac{1}{2}\cos(2\pi t_{\rm ventricle}/t_{\rm twitch})+0.5 &t_{\rm ventricle} < t_{\rm twitch}\\ 0&t_{\rm ventricle}\geq t_{\rm twitch}\\ \end{array}}}\right. $$
(A3)

with

$$ t_{\rm ventricle}=\left\{ {{\begin{array}{ll} {\bmod(t-t_{\rm active} ,t_{\rm cycle} )}& {t\geq t_{\rm active}}\\ 0& {t < t_{\rm active} }\\ \end{array}}}\right. $$
(A4)

where V x,rest,d and V x,rest,s are diastolic and systolic unloaded volumes.

Matrix \(\underline{C}\) is the ventricular time-varying compliance matrix:

$$ \underline{C}=y_{\rm v}(\underline{C}_{\rm max }-\underline{C}_{\rm min} )+\underline{C}_{\rm min} $$
(A5)

\(\underline{C}_{\rm max}\) and \(\underline{C}_{\rm min}\) are compliances for the fully active and passive state, respectively.

From the pressure and volume curves in Fig. 2 it can be seen that ventricular co-compliances are pressure-dependent: i.e. the RV volume change for a LV pressure change is different at a constant low and high RV pressure. Hence C LR and C RL in Eq. A1 are written as a function of pressure (see also Table A1).

The same procedure is performed for maximally activated ventricles (Fig. 2b).

Using the time-varying elastance model in the more common way (with input volume and output pressure), Eq. A1 is rewritten as:

$$ \vec {p}={\underline C}^{-1}(t)\cdot (\vec {V}-\vec {V}_{\rm rest}) $$
(A6)

Using this equation, the co-compliances need to be written as a function of volume:

$$ C_{\rm min,LR}=C_{\rm min,LR,slope} V_{\rm L} +C_{\rm min,LR,intercept} $$
(A7)
$$ C_{\rm min,RL} =C_{\rm min,RL,slope} V_{\rm R} +C_{\rm min,RL,intercept} $$
(A8)
$$ C_{\rm max,LR}=C_{\rm max,LR,slope} V_{\rm L} +C_{\rm max,LR,intercept} $$
(A9)
$$ C_{\rm max,RL}=C_{\rm max,RL,slope} V_{\rm R} +C_{\rm max,RL,intercept} $$
(A10)

Parameter values and results of the time-varying elastance model are shown in Table A1 and Fig. 2, respectively, for passive and fully activated myocardium.

TABLE A1. Parameters of the time-varying elastance model.

Appendix B: circulatory model

Time-Varying Elastances for Atria

The atrial elastances are driven by an activation function

$$ y_{\rm a}=\left\{{{\begin{array}{ll} {-\tfrac{1}{2}\cos(2\pi t_{\rm atrium}/t_{\rm twitch} )+0.5}& {t_{\rm atrium} < t_{\rm twitch}}\\ 0& {t_{\rm atrium} \geq t_{\rm twitch} }\\ \end{array}}}\right. $$
(B1)

where

$$ t_{\rm atrium} =\left\{ {{\begin{array}{ll} {\bmod (t-t_{\rm active} +\Delta t_{\rm PR} ,t_{\rm cycle} )}& {t\geq t_{\rm active} -\Delta t_{\rm PR} }\\ 0& {t < t_{\rm active} -\Delta t_{\rm PR} }\\ \end{array}}}\right. $$
(B2)

Left atrial pressure is given by

$$ p_{\rm LA} =E_{\rm LA}\times (V_{\rm LA} -V_{\rm LA,rest}) $$
(B3)

where LA elastance and rest volume (volume at zero pressure) are given by

$$ E_{\rm LA} =(E_{\rm LA,max } -E_{\rm LA,min})\times y_{\rm a} +E_{\rm LA,min} $$
(B4)

and

$$ V_{\rm LA,rest} =(1-y_{\rm a} )(V_{\rm LA,rd} -V_{\rm LA,rs} )+V_{\rm LA,rs} $$
(B5)

Right atrial pressure, elastance, and rest volume are given by

$$ p_{\rm RA} =E_{\rm RA} \times(V_{\rm RA} -V_{\rm RA,rest}) $$
(B6)
$$ E_{\rm RA}=(E_{\rm RA,max}-E_{\rm RA,min} )\times y_{\rm a}+E_{\rm RA,min} $$
(B7)
$$ V_{\rm RA,rest} =(1-y_{\rm a} )(V_{\rm RA,rd}-V_{\rm RA,rs} )+V_{\rm RA,rs} $$
(B8)

Systemic Circulation

$$ p_{\rm as} =V_{\rm as} /C_{\rm as} $$
(B9)
$$ p_{\rm vs} =V_{\rm vs} /C_{\rm vs} $$
(B10)
$$ Q_{\rm ao} =\left\{ {{\begin{array}{ll} {(p_{\rm LV,estim} -p_{\rm as} )/R_{\rm ao} }& {p_{\rm LV,estim} \geq p_{\rm as} }\\ 0& {p_{\rm LV,estim} < p_{\rm as} }\\ \end{array} }}\right. $$
(B11)
$$ Q_{\rm as} =(p_{\rm as} -p_{\rm vs} )/R_{\rm as} $$
(B12)
$$ Q_{\rm vs} =(p_{\rm vs} -p_{\rm RA} )/R_{\rm vs} $$
(B13)
$$ Q_{\rm mitral} =\left\{ {{\begin{array}{ll} {(p_{\rm LA} -p_{\rm LV,estim})/R_{\rm mitral} }&{p_{\rm LA}\geq p_{\rm LV,estim} }\\ 0& {p_{\rm LA} < p_{\rm LV,estim} }\\ \end{array} }} \right. $$
(B14)
$$ \frac{dV_{\rm LA} }{dt}=Q_{\rm vp} -Q_{\rm mitral} $$
(B15)
$$ \frac{dV_{\rm LV,circ} }{dt}=Q_{\rm mitral} -Q_{\rm ao} $$
(B16)
$$ \frac{dV_{\rm as} }{dt}=Q_{\rm ao} -Q_{\rm as} $$
(B17)
$$ \frac{dV_{\rm vs} }{dt}=Q_{\rm as} -Q_{\rm vs} $$
(B18)

Pulmonary Circulation

$$ p_{\rm ap} =V_{\rm ap} /C_{\rm ap} $$
(B19)
$$ p_{\rm vp} =V_{\rm vp} /C_{\rm vp} $$
(B20)
$$ Q_{\rm pa} =\left\{ {{\begin{array}{ll} {(p_{\rm RV,estim} -p_{\rm ap} )/R_{\rm pa} }& {p_{\rm RV,estim} \geq p_{\rm ap} }\\ 0& {p_{\rm RV,estim} < p_{\rm ap} }\\ \end{array}}}\right. $$
(B21)
$$ Q_{\rm ap} =(p_{\rm ap} -p_{\rm vp} )/R_{\rm ap} $$
(B22)
$$ Q_{\rm vp} =(p_{\rm vp} -p_{\rm LA} )/R_{\rm vp} $$
(B23)
$$ Q_{\rm tricus} =\left\{ {{\begin{array}{ll} {(p_{\rm RA} -p_{\rm RV,estim} )/R_{\rm tricus} }& {p_{\rm RA} \geq p_{\rm RV,estim} }\\ 0& {p_{\rm RA} < p_{\rm RV,estim} }\\ \end{array}}}\right. $$
(B24)
$$ \frac{dV_{\rm RA} }{dt}=Q_{\rm vs} -Q_{\rm tricus} $$
(B25)
$$ \frac{dV_{\rm RV,circ} }{dt}=Q_{\rm tricus} -Q_{\rm pa} $$
(B26)
$$ \frac{dV_{\rm ap} }{dt}=Q_{\rm pa} -Q_{\rm ap} $$
(B27)
$$ \frac{dV_{\rm vp} }{dt}=Q_{\rm ap} -Q_{\rm vp} $$
(B28)

Notice that ventricular volume changes (Eqs. B16 and B26) are purely determined by ventricular in- and outflows. In the case of coupling between the FE and circulatory model, cavity pressures come from the update algorithm. In the case of the procedure for determining the initial conditions, cavity pressures are calculated by the ventricular time-varying elastance model.

See Table B1 for a description of state variables and their initial conditions. Tables B2 and B3 contain descriptions of circulatory variables and parameters, respectively.

TABLE B1. State variables of the circulatory model.
TABLE B2. Variables of the circulatory model.
TABLE B3. Parameters of the circulatory model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerckhoffs, R.C.P., Neal, M.L., Gu, Q. et al. Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation. Ann Biomed Eng 35, 1–18 (2007). https://doi.org/10.1007/s10439-006-9212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9212-7

Keywords

Navigation