Advertisement

Annals of Biomedical Engineering

, Volume 35, Issue 1, pp 101–108 | Cite as

In vivo MR Imaging of Tissue-engineered Human Mesenchymal Stem Cells Transplanted to Mouse: a Preliminary Study

  • In Kap Ko
  • Ho-Taek Song
  • Eun-Jin Cho
  • Eun Sook Lee
  • Yong-Min HuhEmail author
  • Jin-Suck Suh
Article

Abstract

Current progress integrating stem cell biology and tissue engineering techniques has been invaluable to clinical applications. Prior to the application of celluar transplantation technique to patients, we need to establish techniques that can monitor their tissue biodistribution non-invasively. In this study, we proposed an imaging modality using MRI to not only monitor implanted scaffold in vivo, but also to track transplanted cells and behavior around the implant. For this purpose, human bone marrow-derived mesenchymal stem cells (hMSCs) were labeled with superparamagnetic iron oxide (Feridex) and then labeled hMSCs were cultured in a gelatin sponge used as a scaffold to support cell growth and proliferation. Histological assessment and MTT assay showed that cell labeling with MR contrast agent did not harm cell viability. Also, Feridex-labeled hMSCs showed a significant decrease in T2 signal intensity, even within the gelatin sponge in vitro. After implanting the sponge/cell complex in vivo, we could visualize cellular behavior around the implant over time using a noninvasive MRI modality and this finding was correlated with histological study, which illustrates the potential of a new approach proposed here for in vivo monitoring of implanted cell-based tissue-engineered product.

Keywords

MRI (magnetic resonance imaging) Scaffold Mesenchymal stem cell Transplantation Cell migration 

Notes

Acknowledgment

We would like to thank to Prof. S.-H. Moon in Department of Orthopaedic Surgery in Yonsei University for his kind hMSC donation. This work was supported by the Korea Research Foundation Grant (KRF-2004-003-E00171).

References

  1. 1.
    Aime S., Botta M., Garino E., Crich S. G., Giovenzana G., Pagliarin R., Palmisano G., Sisti M. (2000) Non-covalent conjugates between cationic polyamino acids and GdIII chelates: A route for seeking accumulation of MRI-contrast agents at tumor targeting sites. Chemistry 6: 2609–2617CrossRefPubMedGoogle Scholar
  2. 2.
    Bianco P., Robey P. G. (2001) Stem cells in tissue engineering. Nature 414:118–121CrossRefPubMedGoogle Scholar
  3. 3.
    Bull S. R., Guler M. O., Bras R. E., Venkatasubramanian P. N., Stupp S. I., Meade T. J. (2005) Magnetic resonance imaging of self-assembled biomaterial scaffolds. Bioconjug. Chem. 16: 1343-1348CrossRefPubMedGoogle Scholar
  4. 4.
    Bulte J. W. M., Duncan I. D., Frank J. A. (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J. Cereb. Blood. Flow. Metab. 22: 899–907CrossRefPubMedGoogle Scholar
  5. 5.
    Cortesini R. (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl. Immunol. 15: 81–89CrossRefPubMedGoogle Scholar
  6. 6.
    Dodd S. J., William M., Suhan J. P., William D. S., Koretsky A. P., Ho C. (1999) Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J. 76:103–109PubMedCrossRefGoogle Scholar
  7. 7.
    Foster-Gareau P., Heyn C., Alejski A., Rutt B.K.. (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Res. Med. 49:968–971CrossRefGoogle Scholar
  8. 8.
    Genove G., DeMarco U., Xu H., Goins W. F., Ahrens E.T. (2005) A new trangene reporter for in vivo magnetic resonance imaging. Nat. Med. 11: 450–454CrossRefPubMedGoogle Scholar
  9. 9.
    Hilderbrand S. A., Kelly K. A., Weissleder R., Tung C. H. (2005) Monofunctional near-infrared fluorochromes for imaging applications. Bioconjug. Chem. 16: 1275–1281 CrossRefPubMedGoogle Scholar
  10. 10.
    Huber M. M., Staubli A. B., Kustedjo K., Gray M. H., Shih J., Fraser S. E., Jacobs R. E., Meade T. J.. (1998) Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9: 242–249CrossRefPubMedGoogle Scholar
  11. 11.
    Huh Y. M., Jun Y. W., Song H. T., Kim S., Choi J. S., Lee J. H., Yoon S., Kim K. S., Shin J. S., Suh J. S., Cheon J. (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 127:12387–12391CrossRefPubMedGoogle Scholar
  12. 12.
    Jun Y. W., Huh Y. M., Choi J. S., Lee J. H., Song H. T., Kim S., Yoon S., Kim K. S., Shin J. S., Suh J. S., Cheon J.. (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127:5732–5733CrossRefPubMedGoogle Scholar
  13. 13.
    Kotobuki N., Ioku K., Kawagoe D., Fujimori H., Goto S., Ohgushi H. (2005) Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 26:779–785,CrossRefPubMedGoogle Scholar
  14. 14.
    Langer R., Vacanti J. P. (1993) Tissue engineering. Science 260: 920–926CrossRefPubMedGoogle Scholar
  15. 15.
    Lewin M., Carlesso N., Tung C. H., Tang X. W., Cory D., Scadden D. T., Weissleder R.. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18: 410–414CrossRefPubMedGoogle Scholar
  16. 16.
    Louie A. Y., Huber M. M., Ahrens E. T., Rothbacher U., Moats R., Jacobs R. E., Fraser S. E., Meade T. J. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18: 321–325CrossRefPubMedGoogle Scholar
  17. 17.
    Mader K., Bacic G., Domb A., Elmalak O., Langer R., Swartz H. M. (1997) Noninvasive in vivo monitoring of drug release and polymer erosion from biodegradable polymers by EPR spectroscopy and NMR imaging. J. Pharm. Sci. 86:126–134 CrossRefPubMedGoogle Scholar
  18. 18.
    Meade T. J., Taylor A. K., Bull S. R. (2003) New magnetic resonance contrast agents as biochemical reporters. Curr. Opin. Neurobiol. 13: 597–602 CrossRefPubMedGoogle Scholar
  19. 19.
    Nagaya N., Kangawa K., Itoh T., Iwase T., Murakami S., Miyahara Y., Fujii T., Uematsu M., Ohgushi H., Yamagishi M., Tokudome T., Mori H., Miyatake K., Kitamura S. (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135CrossRefPubMedGoogle Scholar
  20. 20.
    Park K. I., Teng Y. D., Snyder E. Y. (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20:111–1117CrossRefGoogle Scholar
  21. 21.
    Pihlajamaki H., Kinnunen J., Bostman O. (1997) In vivo monitoring of the degradation process of bioresorbable polymeric implants using magnetic resonance imaging. Biomaterials 18: 1311–1315CrossRefPubMedGoogle Scholar
  22. 22.
    Richardson T. P., Peters M. C., Ennett A. B., Mooney D. J. (2001) Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034CrossRefPubMedGoogle Scholar
  23. 23.
    Shapiro E. M., Skrtic S., Koretsky A. P. (2005) Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med. 53:329–338CrossRefPubMedGoogle Scholar
  24. 24.
    Shen F., Poncet-Legrand C., Somers S., Slade A., Yip C., Duft A. M., Winnik F. M., Chang P. L. (2003) Properties of a novel magnetized alginate for magnetic resonance imaging. Biotechnol. Bioeng. 83: 282–292CrossRefPubMedGoogle Scholar
  25. 25.
    Song H. T., Choi J. S., Huh Y. M., Kim S., Jun Y. W., Suh J. S., Cheon J. (2005) Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J. Am. Chem. Soc. 127: 9992––9993CrossRefPubMedGoogle Scholar
  26. 26.
    Uematsu K., Hattori K., Ishimoto Y., Yamauchi J., Habata T., Takakura Y., Ohgushi H., Fukuchi T., Sato M. (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26:4273-4279CrossRefPubMedGoogle Scholar
  27. 27.
    Vuu K., Xie J., McDonald M. A., Bernardo M., Hunter F., Zhang Y., Li K., Bednarski M., Guccione S.. (2005) Gadolinium–rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug. Chem. 16: 995–999CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2006

Authors and Affiliations

  • In Kap Ko
    • 1
  • Ho-Taek Song
    • 1
  • Eun-Jin Cho
    • 1
  • Eun Sook Lee
    • 1
  • Yong-Min Huh
    • 1
    Email author
  • Jin-Suck Suh
    • 1
  1. 1.Department of radiologyCollege of MedicineSeoulRepublic of Korea

Personalised recommendations