Annals of Biomedical Engineering

, Volume 35, Issue 1, pp 19–29

Biomechanics of the Porcine Basilar Artery in Hypertension

  • J.-J. Hu
  • T. W. Fossum
  • M. W. Miller
  • H. Xu
  • J.-C. Liu
  • J. D. Humphrey
Article
  • 262 Downloads

Abstract

Hypertension is a significant risk factor for diverse cerebrovascular diseases ranging from stroke to arteriovenous malformations and saccular aneurysms. Our increasing understanding of vascular mechanobiology reveals that changes in mechanical stimuli, such as increased blood pressure, alter basic cellular functions including the production and degradation of extracellular matrix as well as proliferation, migration, and apoptosis. Understanding changes in the biomechanical properties of the vascular wall is fundamental to correlating mechanobiological responses with the altered loads. In this paper, we present the first biomechanical data on a large cerebral artery in terms of the time of development of hypertension in maturity. Specifically, we report rapid changes in both the structural and the material stiffness of the passive basilar artery in a novel aortic-coarctation model of hypertension in the mini-pig. Histological measurements reveal associated increases in fibrillar collagens in the media and adventitia as well as increased smooth muscle in the media. That such dramatic changes occur within 2 weeks of the initiation of hypertension in maturity necessitates a detailed study of the early changes as well as the potential to reverse these changes at later times.

Keywords

Cerebrovascular disease Mechanobiology Stress–strain Stiffness Aortic coarctation hypertension 

References

  1. 1.
    Bagshaw R. J., Barrer S. J., Cox R. H., (1987) Connective tissue analysis of the canine circle of Willis in hypertension. Neurosurgery 21:655–659PubMedCrossRefGoogle Scholar
  2. 2.
    Baumbach, G. L. and D. D. Heistad. Mechanisms involved in the genesis of cerebral vascular damage in hypertension. In: Handbook of Hypertension, edited by L. Hansson and W. H. Birkenhager. Elsevier, 1997Google Scholar
  3. 3.
    Brekke J. F., Gokina N. I., Osol G., (2002) Vascular smooth muscle cell stress as a determinant of cerebral artery myogenic tone. Am. J. Physiol. 283:H2210–H2216Google Scholar
  4. 4.
    Bryan R. M., Marrelli S. P., Steenberg M. L., Schildmeyer L. A., Johnson T. D., (2001) Effects of luminal shear stress on cerebral arteries and arterioles. Am. J. Physiol. 280:H2011–H2022Google Scholar
  5. 5.
    Cox R. H., (1983) Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Physiol. 244:H298–H303PubMedGoogle Scholar
  6. 6.
    Fossum T. W., Baltzer W. I., Miller M. W., Aguirre M., Whitlock D., Solter P., Makarski L. A., McDonald M. M., An M. Y., Humphrey J. D., (2003) A novel aortic coarctation model for studying hypertension in the pig. J. Invest. Surg. 16:35–44PubMedGoogle Scholar
  7. 7.
    Gleason R. L., Humphrey J. D., (2004) A mixture model of arterial growth and remodeling in hypertension: Altered muscle tone and tissue turnover. J. Vasc. Res. 41:352–63CrossRefPubMedGoogle Scholar
  8. 8.
    Getty R., (1975) The Anatomy of the Domestic Animal. W. B. Saunders, PhiladelphiaGoogle Scholar
  9. 9.
    Hajdu M. A., Baumbach G. L., (1994) Mechanics of large and small cerebral arteries in chronic hypertension. Am. J. Physiol. 266:H1027–H1033PubMedGoogle Scholar
  10. 10.
    Hayashi K., Handa H., Nagasawa S., Okumura A., Moritake K., (1980) Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13:175–184CrossRefPubMedGoogle Scholar
  11. 11.
    Hogestatt E. D., Andersson K. E., Edvinsson L., (1983) Mechanical properties of rat cerebral arteries as studied by a sensitive device for recording of mechanical activity in isolated small blood vessels. Acta Physiol. Scand. 117:49–61PubMedGoogle Scholar
  12. 12.
    Humphrey J. D., (2002) Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer-Verlag New YorkGoogle Scholar
  13. 13.
    Humphrey J. D., Wilson E., (2003) A potential role of smooth muscle tone in early hypertension: A theoretical study. J. Biomech. 36:1595–1601CrossRefPubMedGoogle Scholar
  14. 14.
    Lee R. M. K. W., (1995) Morphology of cerebral arteries. Pharacol. Ther. 66:149–173CrossRefGoogle Scholar
  15. 15.
    Ling P., Taber L. A., Humphrey J. D., (2002) Approach to quantify the mechanical behavior of the intact embryonic chick heart. Ann. Biomed. Eng. 30:636–45CrossRefPubMedGoogle Scholar
  16. 16.
    Lodi C. A., Ursino M., (1999) Hemodynamic effect of cerebral vasospasm in humans: A modeling study. Ann. Biomed. Eng. 27:257–273CrossRefPubMedGoogle Scholar
  17. 17.
    Mangiarua E. I., Lee R. M., (1992) Morphometric study of cerebral arteries from spontaneously hypertensive and stroke-prone spontaneously hypertensive rats. J. Hypertens. 10:1183–1190CrossRefPubMedGoogle Scholar
  18. 18.
    Matsumoto T., Hayashi K., (1994) Mechanical and dimensional adaptation of rat aorta to hypertension. J. Biomech. Eng. 116:278–283PubMedGoogle Scholar
  19. 19.
    Mitchell, J., and D. F. Bohr. Experimental hypertension in the pig. In: Handbook of Hypertension, edited by W. de Jong. Elsevier, 1984Google Scholar
  20. 20.
    Nagasawa S., Handa H., Okumura A., Naruo Y., Moritake K., Hayashi K., (1979) Mechanical properties of human cerebral arteries. Part 1. Effects of age and vascular smooth muscle activation. Surg. Neurol. 12:297–304PubMedGoogle Scholar
  21. 21.
    Ohta T., Mori M., Ogawa R., Tsuji M., (1991) Development of a new perfusion system for pharmacologic study on rabbit basilar arteries. Stroke 22:384–389PubMedGoogle Scholar
  22. 22.
    Pickering J. G., Boughner D. R., (1990) Fibrosis in the transplanted heart and its relation to donor ischemic time. Assessment with polarized light microscopy and digital image analysis. Circulation 81:949–958PubMedGoogle Scholar
  23. 23.
    Rachev A., Stergiopulos N., Meister J-J., (1998) A model for geometric and mechanical adaptation of arteries to sustained hypertension. J. Biomech. Eng. 120:9–17PubMedGoogle Scholar
  24. 24.
    Strandgaard S., Paulson O. B., (1995) Cerebral blood flow in untreated and treated hypertension. Neth. J. Med. 47:180–184CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka M., Fujiwara H., Onodera T., Wu D. J., Hamashima Y., Kawai C., (1986) Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br. Heart J. 55:575–81PubMedGoogle Scholar
  26. 26.
    Thorin-Trescases N., Bevan J. A., (1998) High levels of myogenic tone antagonize the dilator response to flow of small rabbit cerebral arteries. Stroke 29:1194–1201PubMedGoogle Scholar
  27. 27.
    Vinall P. E., Simeone F. A., (1987) Whole mounted pressurized in vitro model study of cerebral artery mechanics. Blood Vessels 24:51–62PubMedCrossRefGoogle Scholar
  28. 28.
    Walmsley J. G., Campling M. R., Chertkow H. M., (1983) Interrelationships among wall structure, smooth muscle orientation, and contraction in human major cerebral arteries. Stroke 14:781–790PubMedGoogle Scholar
  29. 29.
    Whittaker P., Kloner R. A., Boughner D. R., Pickering J. G., (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res. Cardiol. 89:397–410CrossRefPubMedGoogle Scholar
  30. 30.
    Winquist R. J., Bohr D. F., (1983) Structural and functional changes in cerebral arteries from spontaneously hypertensive rats. Hypertension 5:292–7PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J.-J. Hu
    • 1
  • T. W. Fossum
    • 2
    • 4
  • M. W. Miller
    • 2
    • 4
  • H. Xu
    • 3
  • J.-C. Liu
    • 3
  • J. D. Humphrey
    • 1
    • 4
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Small Animal Medicine and SurgeryTexas A&M UniversityCollege StationUSA
  3. 3.Department of Computer ScienceTexas A&M UniversityCollege StationUSA
  4. 4.M.E. DeBakey InstituteTexas A&M UniversityCollege StationUSA

Personalised recommendations