Skip to main content
Log in

The Effect of Methanol on Lipid Bilayers: An Atomistic Investigation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The interactions of methanol with lipid bilayers were studied by means of molecular dynamics (MD) simulations. Our MD simulations focus on the effect of ∼11.3 mol% methanol on two fully hydrated dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers both in the fluid phase and under equilibrium conditions at 323 and 298 K, respectively. The effects of methanol on bilayers structural characteristics were investigated. In both systems the simulations show that the presence of relatively high concentration of methanol leads to a significant increase in the area per lipid. The increase in the area per lipid is accompanied by a corresponding decrease of the bilayer thickness such that the volume occupied per lipid does not change significantly in the presence of methanol. Other properties such as ordering of phospholipid tails and lateral diffusion of the lipids are also affected significantly by the presence of methanol. Consistent with other previously reported MD simulation studies of bilayers in the presence of methanol (albeit at a significantly smaller concentration of 1 mol%) our study shows very few hydrogen bonding formation between lipids and methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

Similar content being viewed by others

REFERENCES

  1. Bandyopadhyay, S., M. Tarek, and M. L. Klein. Computer simulation studies of amphiphilic interfaces. Curr. Opin. Coll. Int. Sci. 3:242–246, 1998.

    Article  CAS  Google Scholar 

  2. Bemporad, D., J. W. Essex, and C. Luttmann. Permeation of small molecules through a lipid bilayer: a computer simulation study. J. Phys. Chem. B. 108:4875–4884, 2004.

    Article  CAS  Google Scholar 

  3. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, and J. Hermans. Interaction Models for Water in Relation to Protein Hydration, In B. Pullman, editor, Intermolecular Forces, Reidel, Dordrecht, 331–342, 1981.

  4. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics coupling to an external bath. J. Chem. Phys. 81:3684–3690, 1984.

    Article  CAS  Google Scholar 

  5. Berneche, S., M. Nina, and B. Roux. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys. J. 75:1603–1618, 1998.

    PubMed  CAS  Google Scholar 

  6. Berger, O., O. Edholm, and F. Jahnig. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure and constant temperature. Biophys. J. 72:2002–2013, 1997.

    PubMed  CAS  Google Scholar 

  7. Borin, I. A., and M. S. Skaf. Molecular association between water and dimethylsulfoxide in solution: A molecular dynamics simulation study. J. of Chem. Phys. 110:6412–6420, 1999.

    Article  CAS  Google Scholar 

  8. Devireddy, R. V., B. Fahrig, R. A. Godke, and S. P. Leibo. Subzero water transport characteristics of boar spermatozoa confirm observed optimal cooling rates. Mol. Reprod. Dev. 67:446–457, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Devireddy, R. V. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol. Reprod. Dev. 70:333–343, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Dicky, A. N., and R. Faller. Investigating interactions of biomembranes and alcohols: A multiscale approach. J. Polym. Sci. B 43:1025–1032, 2005.

    Article  CAS  Google Scholar 

  11. Essman, U., L. Perera, M. L. Berkowitz, H. L. T. Darden, and L. G. Pedersen. A smooth particle mesh Ewald method. J. Chem. Phys. 103:8577–8593, 1995.

    Article  Google Scholar 

  12. Feller, S. E., Z. Yuhong, and R. W. Pastor. Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer. J. Chem. Phys. 103:10267–10276, 1995.

    Article  CAS  Google Scholar 

  13. Feller, S. E., C. A. Brown, D. T. Nizza, and K. Gawrisch. Nuclear overhauser enhancement spectrotroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys. J. 82:1396–1404, 2002.

    PubMed  CAS  Google Scholar 

  14. He, Y., and R. V. Devireddy. An inverse approach to determine solute and solvent permeability parameters in artificial tissues. Ann. Biomed. Eng. 33:709–718, 2005.

    Article  PubMed  Google Scholar 

  15. Hess, B., H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem. 18:1463–1472, 1997.

    Article  CAS  Google Scholar 

  16. Hoff, B., E. Strandberg, A. S. Ulrich, D. P. Tieleman, and C. Posten. 2h-NMR study and molecular dynamics simulation of the location, alignment and mobility of pyrene in popc bilayers. Biophys. J. 88:1818–1827, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, B. W., R. Faller, A. K. Sum, I. Vattulainen, M. Patra, and M. Karttunen. Structural effects of small molecules on phospholipids bilayers investigated by molecular simulations. Fluid Phase Equi. 225:63–68, 2004.

    Article  CAS  Google Scholar 

  18. Lindahl, E., B. Hess, and D. van der Spoel. A package for molecular simulation and trajectory analysis. J. Mol. Mod. 7:306–317, 2001.

    CAS  Google Scholar 

  19. del Luzardo, M. C., F. Amalfa, A. M. Nunez, S. Diaz, A. C. deBiondi Lopez, and E. A. Disalvo. Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. 78:2452–2458, 2000.

  20. Ly, H. V., D. E. Block, and M. L. Longo. Interfacial tension effect of ethanol on lipid bilayer rigidity, stability, and area/molecule: A micropipet aspiration approach. Langmuir 18:8988–8995, 2002.

    Article  CAS  Google Scholar 

  21. Marrink, S. J., and H. J. C. Berendsen. Simulation of water transport through a lipid-membrane. J. Phys. Chem. 98:4155–4168, 1994.

    Article  CAS  Google Scholar 

  22. Marrink, S. J., E. Lindahl, O. Edholm, and A. E. Mark. Simulation of the spontaneous aggregation of phospholipids into bilayers. J. Am. Chem. Soc. 123:8638–8639, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Martyna, G. J., M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87:1117–1157, 1996.

    Article  CAS  Google Scholar 

  24. Merz, K. M., Jr., and B. Roux. Biological Membranes: A Molecular Perspective from Computation and Experiment. Birkhauser, Boston, 1996.

    Google Scholar 

  25. Mou, J., J. Yang, C. Huang, and Z. Shao. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistrty. 33:9981–9985, 1994.

    Article  CAS  Google Scholar 

  26. Nagle, J. F., and S. Tristram-Nagle. Structure of lipid bilayers. Biochim. Biophys. Acta. 1469:159–195, 2000.

    PubMed  CAS  Google Scholar 

  27. Paci, E., and M. Marchi. Membrane crossing by a polar molecule: A molecular dynamics simulation. Mol. Simul. 14:1–10, 1994.

    Article  CAS  Google Scholar 

  28. Pasenkiewicz-Gierula, M., T. Rog, J. Grochowski, P. Serda, R. Czarnecki, R. Librowski, and S. Lochyski. Effects of a carane derivative local anesthetic on a phospholipids bilayer studied by molecular dynamics simulation. Biophys. J. 85:1248–1258, 2003.

    PubMed  CAS  Google Scholar 

  29. Patra, M., M. Karttunen, M. T. Hyvonen, E. Falck, P. Lindqvist, and I. Vattulainen. Molecular dynamics simulations of lipid bilayers: Major artifacts due to electrostatic intercations. Biophys. J. 84:3636–3645, 2003.

    PubMed  CAS  Google Scholar 

  30. Patra, M., E. Salonen, E. Terama, I. Vattulainen, R. Faller, B. W. Lee, J. Holopainen, and M. Karttunen. Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers. arXiv.org:cond-mat/0408122 (2004).

  31. Pereira, C. S., R. D. Lins, I. Chandrasekhar, L. C. G. Freitas, and P. H. Hunenberger. Interaction of the disaccharide trehalose with a phospholipids bilayer: A molecular dynamics simulation study. Biophys. J. 86:2273–2285, 2004.

    PubMed  CAS  Google Scholar 

  32. Pickholz, M., L. Saiz, and M. L. Klein. Concentration effects of volatile anesthetics on the properties of model membranes: A coarse-grain approach. Biophys. J. 88:1524–1534, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Pinisetty, D., C. Huang, Q. Dong, T. Tiersch, and R. V. Devireddy. Subzero water permeability parameters and optimal freezing rates for sperm cells of the southern platyfish, Xiphophorus maculatus. Cryobiology 50:250–263, 2005.

    Article  PubMed  CAS  Google Scholar 

  34. Polge, C., A. U. Smith, and A. S. Parks. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666–676, 1949.

    Article  PubMed  CAS  Google Scholar 

  35. Repakova, J., P. Capkova, J. M. Holopainen, and I. Vattulainen. Distribution, orientation and dynamics of DPH probes in DPPC bilayer. J. Phys. Chem. B 108:13438–13448, 2004.

    Article  CAS  Google Scholar 

  36. Rog, T., and M. Pasenkiewicz-Gierula. Cholesterol effects on the phosphatidylcholine bilayer non-polar region: A molecular simulation study. Biophys. J. 81:2190–2202, 2001.

    PubMed  CAS  Google Scholar 

  37. Saiz, L., and M. L. Klein. Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys. J. 81:204–216, 2001.

    PubMed  CAS  Google Scholar 

  38. Schlichter, J., J. Friedrich, L. Herenyi, and J. Fidy. Trehalose effect on low temperature protein dynamics: Fluctuation and relaxation phenomena. Biophys. J. 80:2011–2017, 2001.

    PubMed  CAS  Google Scholar 

  39. Smondyrev, A. M., and M. L. Berkowitz. Molecular dynamics simulation of DPPC bilayer in DMSO. Biophys. J. 76:2472–2478, 1999.

    PubMed  CAS  Google Scholar 

  40. Song Guallar, Y. V., and N. A. Baker. Molecular dynamics simulations of saliculate effects on the micro-and mesoscopic properties of dipalmitoylphosphatidylcholine bilayers. Biochemistry 44:13425–13438, 2005.

    Article  CAS  Google Scholar 

  41. Sum, A. K., R. Faller, and J. J. de Pablo. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys. J. 85:2830–2844, 2003.

    PubMed  CAS  Google Scholar 

  42. Sum, A. K., and J. J. de Pablo. Molecular simulation study on the influence of dimethylsulfoxide on the structure of phospholipid bilayers. Biophys. J. 85:3636–3645, 2003.

    Article  PubMed  CAS  Google Scholar 

  43. Tieleman, D. P., and H. J. C. Berendsen. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidycholine bilayer with different macroscopic boundary conditions and parameters. J. Chem. Phys. 105:4871–4880, 1996.

    Article  CAS  Google Scholar 

  44. Tieleman, D. P., S. J. Marrink, and H. J. C. Berendsen. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta. 1331:235–270, 1997.

    PubMed  CAS  Google Scholar 

  45. Thirumala, S., and R. V. Devireddy. A simplified to determine the optimal rate of freezing biological systems. ASME J. Biomech. Eng. 127:295–300, 2005.

    Article  Google Scholar 

  46. Villarreal, M. A., S. B. Diaz, E. Anibal Disalvo, and G. G. Montich. Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. Langmuir 20:7844–7851, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by grants from the Louisiana Board of Regents to DM {LEQSF 2003-06–RD–A–13} and to RD {LEQSF 2002-05–RD–A–03}. We would also like to thank Dr. M. Patra for numerous helpful suggestions and consistent expert advice

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Devireddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinisetty, D., Moldovan, D. & Devireddy, R. The Effect of Methanol on Lipid Bilayers: An Atomistic Investigation. Ann Biomed Eng 34, 1442–1451 (2006). https://doi.org/10.1007/s10439-006-9148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9148-y

Keywords

Navigation