Skip to main content

Advertisement

Log in

Statistical Mapping of Speckle Autocorrelation for Visualization of Hyperaemic Responses to Cortical Stimulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Statistically mapped speckle autocorrelation images (SAR) were used to track the hemodynamically active perfusion regions in the rat cortex during and following DC current stimulation with high transverse spatial resolution (38 um). The SAR images provided a spatio-temporal information about the net activation patterns of Cerebral Blood Flow (CBF) changes over a period of time as against those changes for each frame interval estimated using spatial contrasts derived from the first order spatial statistics. Thus the information about the relative maxima of perfusion during a Transient Hyperaemic Episode (THE) across different regions in the imaging window could be identified without the need for actually having to estimate the spatial contrast maps of the imaged region for each frame contained in the time window of observation. With the application of DC stimulation, the regions with a high correlation in the temporal fluctuations were representative of the areas that underwent least changes in activation. By varying the intensity of stimulation, THEs were observed for stimulation current densities in the range 0.1–3.8 mA/mm2 using both the derived speckle contrast maps and concurrently on a Laser Doppler Flow meter, with its probe positioned 1 mm from the site of stimulation. For current densities below the lower threshold of stimulation, the SAR images revealed an unprecedented reduction in the surge amplitude at sites distal to the region of stimulation. This was accompanied by an increase in pixel areas representing minimally active regions of perfusion (“perfusion islets”) with no identifiable peak in the hemodynamic responses estimated from speckle contrast variations. The SAR images can be a useful tool for visualization of slow wave perfusion dynamics during cortical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

Similar content being viewed by others

REFERENCES

  1. Aizu, Y., K. Ogino et al. Evaluation of blood flow at ocular fundus by using laser speckle. Appl. Opt. 31(16): 3020–3029, 1992.

    Article  Google Scholar 

  2. Ba, A., M. Guiou, N. Pouration, A. Muthialu, D. Rex, A. Cannestra, J. Chen, and A. Toga. Multiwavelength Optical Intrinsic Signal Imaging of Cortical Spreading Depression. J. Neurophysiol. 88:2726–2735, 2002.

    Article  PubMed  Google Scholar 

  3. Bonhoeffer, T., and A. Grinvald. Optical imaging based on intrinsic signals: The methodology. In Brain Mapping: The Methods Volume, edited by A. W. Toga, and J. C. Mazziotia, New York: Academic Press, Inc., pp. 55–97, 1996.

    Google Scholar 

  4. Briers, J. D. Laser doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas. 22: R35–R66, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Briers, J. D., G. Richards, et al. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA). J. Biomed. Opt. 4(1): 164–175, 1999.

    Article  Google Scholar 

  6. Briers, J. D., and S. Webster. Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1(2): 174–179, 1996.

    Article  Google Scholar 

  7. Cohen, L. B. Changes in neuron structure during action potential propogation and synaptic transmission. Physiol. Rev. 53:373–418, 1973.

    PubMed  CAS  Google Scholar 

  8. Dunn, A. K., H. Bolay, et al. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21:195–201, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Durduran, T., M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg. Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry. J. Cereb. Blood Flow Metab. 24: 518–525, 2004.

    Article  PubMed  Google Scholar 

  10. Fercher, A. F., and J. D. Briers. Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37:326–329, 1981.

    Article  Google Scholar 

  11. Grinvald, A., R. D. Frostig, E. E. Lieke, and R. Hildescheim. Optical imaging of neuronal activity. Physiol. Rev. 68:1285–1365, 1988.

    PubMed  CAS  Google Scholar 

  12. Grinvald, A., D. Shoham, I. Glaser, A. Vanzetta, E. Shyoterman, H. Slovin, C. Wijnbergen, and R. A. A. Hildescheim. In-Vivo optical imaging of cortical architecture and dynamics. In Modern Techniques in Neuroscience Research, edited by U. Windhorst and H. Johansson, New York: Springer, pp. 893–969, 1999.

    Google Scholar 

  13. Haglund, M., G. Ojemann, and G. Blasdel. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358: 668–671, 1993.

    Article  Google Scholar 

  14. Hossmann, K. A. Periinfarct depolarizations. Cerebrovascular and Brain Metabolism Reviews. 8:195–208, 1996.

    PubMed  CAS  Google Scholar 

  15. Ishimaru, A. Wave Propagation and Scattering in Random Media, Academic, New York, 1978.

    Google Scholar 

  16. Lieke, E. E., R. D. Frostig, A. Arieli, D. Y. Ts'o, R. Hildesheim, and A. Grinvald. Optical imaging of Cortical activity: Real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic signals. Annu. Rev. Physiol. 51:543–559, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. MacVicar, B. A., and D. Hochman. Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J. Neurosci. 11:1458–1469, 1991.

    PubMed  CAS  Google Scholar 

  18. Moore, C. I., and S. B. Nelson. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80: 2882–2892, 1998.

    PubMed  CAS  Google Scholar 

  19. O’Farrell, A. M. 1, D. E. Rex 1, A. Muthialu 1, N. Pouratian 1, G. K. Wong 1, A. F. Cannestra 2; Y. Chen, W. James 1, and A. W. Toga. Characterization of optical intrinsic signals and blood volume during cortical spreading depression. Neuroreport 11(10): 2121–2125, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Park, B. C., and M. S. Chung. First-order probability density function of the integrated speckle. Opt. Commun. 83:5–9, 1991.

    Article  Google Scholar 

  21. Paul, J. S., F. S. Sheu, and A. R. Luft. Early adaptations in somatosensory cortex after focal ischemic injury to motor cortex, Experimental Brain Research Publisher: Springer-Verlag GmbH ISSN: 0014-4819 (Paper) 1432-1106 (Online) DOI: 10.1007/s00221-005-0077-z Issue: Online First.

  22. Scribot, A. A. First-order probability density functions of speckle measured with a finite aperture. Opt. Commun. 11:238–241, 1974.

    Article  Google Scholar 

  23. Shmuel, A., and A. Grinvald. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 16:6945–6964, 1996.

    PubMed  CAS  Google Scholar 

  24. Soehle, M., A. Heimann, and O. Kempski. On the number of measurement sites required to assess regional cerebral blood flow by laser- Doppler scanning during cerebral ischemia and reperfusion. J. Neurosci. Methods 110:91–94, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Tommerdahl, M., K. A. Delemos, B. L. Whitsel, O. V. Favorov, and C. B. Metz. The response of anterior parietal cortex to cutaneous flutter and vibration. J. Neurophysiol. 82:16–33, 1999.

    PubMed  CAS  Google Scholar 

  26. Tommerdahl, M., O. V. Favorov, and B. L. Whitsel. Optical imaging of intrinsic signals in somatosensory cortex. Behav. Brain Res. 135:83–91, 2002.

    Article  PubMed  Google Scholar 

  27. Weber, B., C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold 3, and A. Buck. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex. Eur. J. Neurosci. 1–7, 2004.

  28. Zhu, J. J., and B. W. Connors. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81:1171–1183, 1999.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by Research Grant, WBS No. R-397-000-010-112, from the National University of Singapore and start-up funding from the Department of Electrical and Computer Engineering, National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thinh M. Le PhD, Assistant Professor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, J.S., Al Nashash, H., Luft, A.R. et al. Statistical Mapping of Speckle Autocorrelation for Visualization of Hyperaemic Responses to Cortical Stimulation. Ann Biomed Eng 34, 1107–1118 (2006). https://doi.org/10.1007/s10439-006-9103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9103-y

Keywords

Navigation